|本期目录/Table of Contents|

[1]王 梦 陈众众 刘 颖 闫文锦 李一然 王玉秀 许文景 姚汉清 朱湘平 徐兴祥 闵凌峰.支气管腔内超声图像评分系统在肺结节良恶性诊断中的应用[J].中华肺部疾病杂志,2021,(02):158-163.[doi:10.3877/cma.j.issn.1674-6902.2021.02.005]
 Wang Meng,Chen Zhongzhong,Liu Ying,et al.Application value of the scoring system based on endobronchial ultrasound image in the diagnosis of pulmonary nodules[J].,2021,(02):158-163.[doi:10.3877/cma.j.issn.1674-6902.2021.02.005]
点击复制

支气管腔内超声图像评分系统在肺结节良恶性诊断中的应用(PDF)

《中华肺部疾病杂志》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年02期
页码:
158-163
栏目:
论著
出版日期:
2021-04-20

文章信息/Info

Title:
Application value of the scoring system based on endobronchial ultrasound image in the diagnosis of pulmonary nodules
作者:
王 梦 陈众众 刘 颖 闫文锦 李一然 王玉秀 许文景 姚汉清 朱湘平 徐兴祥 闵凌峰
225001 扬州,扬州大学医学院附属苏北人民医院呼吸与危重症医学科·南京大学医学院附属苏北医院·大连医科大学附属苏北医院
Author(s):
Wang Meng Chen Zhongzhong Liu Ying Yan Wenjin Li Yiran Wang Yuxiu Xu Wenjing Yao Hanqing Zhu Xiangping Xu Xingxiang Min Lingfeng.
The Department of Respiratory and Critical Care Medicine of North Jiangsu People's Hospital affiliated to Yangzhou University Medical College, North Jiangsu Hospital affiliated to Nanjing University Medical College, North Jiangsu Hospital affiliated to Dalian Medical University, Yangzhou 225001, China
关键词:
支气管腔内超声 图像形态特征 肺结节 良恶性鉴别
Keywords:
Endobronchial ultrasound Image characteristics Pulmonary nodules Differentiate the nature of pulmonary nodules
分类号:
R563
DOI:
10.3877/cma.j.issn.1674-6902.2021.02.005
摘要:
目的 建立基于支气管腔内超声(EBUS)图像的评分系统从而判别肺结节良恶性。方法 回顾性纳入自2018年5月1日至2020年3月1日期间于苏北人民医院气管镜室行气管镜检查的患者资料,所有患者胸部计算机断层扫描(computer tomography, CT)检查见肺部≤3 cm的肺结节而行常规支气管镜检查未见明显异常。使用超声探头引导下在病变处进行活检与刷检协助诊断,未能明确诊断者行进一步侵袭性操作或治疗后随访观察至少3个月获得最终诊断。分析镜下超声图像形态特征,包括病灶外形、边缘、边界、内部回声强弱、内部回声同质或异质、支气管充气征、不规则无回声区、同心圆影8种不同EBUS图像特点与病灶良恶性的关系,建立简易评分系统,使用SPSS软件分析处理数据。结果 114例肺结节患者中,良性病变65例,恶性病变49例。EBUS图像中的三种图像特征,包括病灶圆形或类圆形外形 、边缘不连续 、病灶异质性,差异有统计学意义(P<0.05); 根据建立的简易评分系统,绘制ROC曲线,当评分以7为界点时,敏感度(65.3%)和特异度(78.5%)最高,以该点为最佳诊断点; 当评分≥7时,诊断肺恶性病变的准确率较高。计算Kappa一致性:系数为0.441(95%CI为0.274~0.607,P<0.01),具有中等强度一致性。结论 EBUS图像特征可用于鉴别肺结节良恶性,基于该图像的评分系统在鉴别肺结节良恶性中有较好的应用价值。
Abstract:
Objective To attempt to develop a simple scoring system based on images of endobronchial ultrasound(EBUS)to discriminate between benign and malignant pulmonary nodules. Methods data of patients who undergone bronchoscopy in the Bronchoscopy Room of North Jiangsu People's Hospital during May 1, 2018 and March 1, 2020 were retrospectively included. all of the patients'chest CT scan showed pulmonary nodules ≤3 cm, while routine bronchoscopy showed no obvious abnormalities. Ultrasound probe guided biopsy and brush examination were used to assist in the diagnosis of the disease. Patients with no definite diagnosis were further subjected to invasive surgeries or observations after the treatment for at least 3 months to obtain the final diagnosis. Eight different EBUS image characteristics including lesion shape, margin, border, internal echo strength, homogeneous, or heterogeneous internal echoe, air bronchogram, irregular anechoic area, concentric circles were observed, and the relationship between these image characteristics and the nature of pulmonary nodules were analyzed, a simple scoring system was established, datas were analyzed using SPSS software. Results Among 114 patients with pulmonary nodules, 65 were benign and 49 were malignant. Three image features in EBUS images, including round or round shape of lesions, discontinuous margin, and heterogeneous echogenicity, with statistically significant(P<0.05). According to the simple scoring system established, ROC curve was drawn. When the score was set at 7, the sensitivity(65.3%)and specificity(78.5%)were the highest, and this was the best point for diagnosis. When the score is≥7, the diagnosis of pulmonary malignant lesions was more accurate. Kappa consistency was calculated with a coefficient of 0.441(95%CI 0.274-0.607, P<0.01), showing moderate strength consistency. Conclusion EBUS can provide image characteristic information to differentiate the nature of pulmonary nodules, and the scoring system based on the images has a good application value in differentiating benign from malignant pulmonary nodules.

参考文献/References:

1 Jemal A, Bray F, Center MM, et al. Global cancer statistics[J]. CA Cancer J Clin, 2011, 61(2): 69-90.
2 Khan T, Usman Y, Abdo T, et al. Diagnosis and management of peripheral lung nodule[J]. Ann Transl Med, 2019, 7(15): 348.
3 National Lung Screening Trial Research Team, Timothy RC, William C Black, et al. Results of initial low-dose computed tomographic screening for lung cancer[J]. N Engl J Med, 2013, 368(21): 1980-1991.
4 Rebecca K, Sixto A, Lonny Y, et al. Diagnosis and management of pulmonary nodules[J]. Expert Rev Respir Med, 2014, 8(6): 677-691.
5 Wang W, Yu L, Wang Y, et al. Radial EBUS versus CT-guided needle biopsy for evaluation of solitary pulmonary nodules[J]. Oncotarget, 2018, 9(19): 15122-15131.
6 Tsukasa I, Alexander G, Terunaga I, et al. Bronchoscopic navigation and tissue diagnosis[J]. Gen Thorac Cardiovasc Surg, 2020, 68(7): 672-678.
7 Takehiro I, Sasada S, Chavez C, et al. Radial endobronchial ultrasound images for ground-glass opacity pulmonary lesions[J]. Eur Respir J, 2015, 45(6): 1661-1668.
8 Shigenari O, Takiguchi Y, Hiroshima K, et al. Peripheral pulmonary diseases: evaluation with endobronchial US initialexperience[J]. Radiology, 2002, 224(2): 603-608.
9 Felix H, Ernst A, Schulz M, et al. Endobronchial ultrasound reliably differentiates between airway infiltration and compression by tumor[J]. Chest, 2003, 123(2): 458-462.
10 张 蕾, 李 蒙, 贺 舜, 等. 支气管内超声结合引导鞘对肺磨玻璃密度影的诊断价值[J]. 中华结核和呼吸杂志, 2017, 40(11): 845-849.
11 Noriaki K, Murayama M, Yoshioka S, et al. Analysis of the internal structure of peripheral pulmonary lesions using endobronchial ultrasonography[J]. Chest, 2002, 122(6): 1887-1894.
12 Taiki F, Yasufuku K, Nakajima T, et al. The utility of sonographic features during endobronchial ultrasound-guided transbronchial needle aspiration for lymph node staging in patients with lung cancer: a standard endobronchial ultrasound image classification system[J]. Chest, 2010, 138(3): 641-647.
13 Chao TY, Lie CH, Chung YH, et al. Differentiating peripheral pulmonary lesions based on images of endobronchial ultrasonography[J]. Chest, 2006, 130(4): 1191-1197.
14 Kuo CH, Lin SM, Chen HC, et al. Diagnosis of peripheral lung cancer with three echoic features via endobronchial ultrasound[J]. Chest, 2007, 132(3): 922-929.
15 Lie CH, Chao TY, Chung YH, et al. New image characteristics in endobronchial ultrasonography for differentiating peripheral pulmonary lesions[J]. Ultrasound Med Biol, 2009, 35(3): 376-381.
16 黄 禹, 陈正贤, 任红岩, 等. 支气管内超声两种回声特征在判断肺部周围型病灶良恶性中的应用[J]. 南方医科大学学报, 2012, 32(7): 1016-1019.
17 Herth FJF, Eberhardt R, Becker HD, et al. Endobronchial ultrasound-guided transbronchial lung biopsy in fluoroscopicallyinvisible solitary pulmonary nodules: a prospective trial[Z]. 2006: 129, 147-150.
18 谭旭艳, 张 婷, 李 明. 经支气管超声诊断肺结节性病变[J]. 中国医学影像技术, 2014, 30(11): 1654-1656.
19 黄 禹, 任红岩, 何碧芳, 等. 气管内超声非实时引导下经气管镜肺活检对肺周围型病变的诊断价值[J]. 中华结核和呼吸杂志, 2013, 36(1): 12-16.
20 Baba M, Sekine Y, Suzuki M, et al. Correlation between endobronchial ultrasonography(EBUS)images and histologicfindings in normal and tumor-invaded bronchial wall[Z]. 2002: 35, 65-71.
21 Kurimoto N, Murayama M, Yoshioka S, et al. Assessment of usefulness of endobronchial ultrasonography in determination of depth of tracheobronchial tumor invasion[J]. Chest, 1999, 115(6): 1500-1506.
22 何正强, 傅应云, 李亚珍, 等. 支气管腔内超声特征对肺部结节良恶性的预测价值[J]. 国际呼吸杂志, 2018, 38(22): 1703-1707.
23 李 静, 陈正贤. 周围型肺癌支气管内超声支气管充气征及其病理学基础[J]. 中国肺癌杂志, 2010, 13(5): 424-431.
24 Arash B, Nguyen P, Jersmann H, et al. Radial endobronchial ultrasound greyscale texture analysis using whole-lesion analysis can characterise benign and malignant lesions without Region-of-interest selection bias[J]. Respiration, 2019, 97(1): 78-83.
25 Phan N, Bashirzadeh F, Hundloe J, et al. Grey scale texture analysis of endobronchial ultrasound mini probe images for prediction of benign or malignant aetiology.[J]. Respirology(Carlton, Vic.), 2015, 20(6): 960-966.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金资助项目(81870033)
通信作者: 闵凌峰, Email: minlingfeng@163.com
更新日期/Last Update: 2021-04-20