|本期目录/Table of Contents|

[1]林琼真,胡子良,周戈,等.CT特征对肺腺癌患者间隙转移风险模型的构建分析[J].中华肺部疾病杂志,2021,(03):308-311.[doi:10.3877/cma.j.issn.1674-6902.2021.03.010]
点击复制

CT特征对肺腺癌患者间隙转移风险模型的构建分析(PDF)

《中华肺部疾病杂志》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年03期
页码:
308-311
栏目:
临床研究
出版日期:
2021-06-20

文章信息/Info

Title:
-
作者:
林琼真胡子良周戈林英
363000 漳州,联勤保障部队第九〇九医院医学影像科
Author(s):
-
关键词:
肺腺癌 间隙转移 计算机断层扫描特征 预测模型
Keywords:
-
分类号:
R734.2
DOI:
10.3877/cma.j.issn.1674-6902.2021.03.010
摘要:
目的 应用计算机断层扫描(CT)特征的预测模型以预测肺腺癌患者间隙转移(STAS)风险。方法 纳入2016年1月至2019年1月我院收治的82例肺腺癌患者为对象; 所有患者均接受肺腺癌常规治疗,收集患者入院时人口学资料、临床资料特征,根据患者是否有STAS分为有转移组31例和无转移组51例; 采用Cox回归方程分析肺腺癌患者STAS的风险因子并构建风险预测模型,并分析其预测效能。结果 单变量分析显示有转移组 肺腺癌亚型、术后临床分期组间比较差异均有统计学意义(P<0.05),CT特征CTR、pGGNs、SNs、囊性空域、玻璃结节、肺肿瘤边界模糊、胸膜粘连组间差异有统计学意义(P<0.05); Cox分析显示肺腺癌亚型(HR=4.304)、术后临床分期(HR=3.405)、肿瘤最大径(HR=2.178)、胸膜凹陷征(HR=4.883)、空气支气管征(HR=0.207)是肺腺癌患者STAS的风险因素; ROC曲线显示模型预测肺腺癌患者STAS的曲线下面积为0.714。结论 肺腺癌亚型、术后临床分期、肿瘤最大径、胸膜凹陷征、空气支气管征是肺腺癌患者STAS的风险因素,建立的预测模型为临床识别肺腺癌患者STAS的高危患者提供参考。
Abstract:
-

参考文献/References:

1 Zhang C, Zhang J, Xu FP, et al. Genomic landscape and immune microenvironment features of preinvasive and early invasive lung adenocarcinoma[J]. J Thorac Oncol, 2019, 14(11): 1912-1923.
2 Eguchi T, Kameda K, Lu S, et al. Lobectomy is associated with better outcomes than sublobar resection in spread through air spaces(STAS)-positive T1 lung adenocarcinoma: a propensity score-matched analysis[J]. J Thorac Oncol, 2019, 14(1): 87-98.
3 Toki MI, Harrington K, Syrigos KN. The role of spread through air spaces(STAS)in lung adenocarcinoma prognosis and therapeutic decision making[J]. Lung Cancer, 2020, 146(1): 127-133.
4 Jia M, Yu S, Gao H, et al. Spread through air spaces(STAS)in lung cancer: a multiple-perspective and update review[J]. Cancer Manag Res, 2020, 12: 2743-2752.
5 Jiang C, Luo Y, Yuan J, et al. CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma[J]. Eur Radiol, 2020, 30(7): 4050-4057.
6 Li C, Jiang C, Gong J, et al. A CT-based logistic regression model to predict spread through air space in lung adenocarcinoma[J]. Quant Imaging Med Surg, 2020,10(10): 1984-1993.
7 Kim SK, Kim TJ, Chung MJ, et al. Lung adenocarcinoma: CT features associated with spread through air spaces[J]. Radiology, 2018, 289(3): 831-840.
8 姜格宁, 陈 昶, 朱余明, 等. 上海市肺科医院磨玻璃结节早期肺腺癌的诊疗共识(第一版)[J]. 中国肺癌杂志, 2018, 21(3): 147-159.
9 Lee MA, Kang J, Lee HY, et al. Spread through air spaces(STAS)in invasive mucinous adenocarcinoma of the lung: Incidence, prognostic impact, and prediction based on clinicoradiologic factors[J]. Thorac Cancer, 2020, 11(11): 3145-3154.
10 钱桂生. 肺癌不同病理类型发病率的变化情况及其原因[J/CD]. 中华肺部疾病杂志(电子版), 2011, 4(1): 1-5.
11 Ma K, Zhan C, Wang S, et al. Spread through air spaces(STAS): a new pathologic morphology in lung cancer[J]. Clin Lung Cancer, 2019, 20(2): 158-162.
12 Qiu X, Chen D, Liu Y, et al. Relationship between stromal cells and tumor spread through air spaces in lung adenocarcinoma[J]. Thorac Cancer, 2019, 10(2): 256-267.
13 Ding Q, Chen D, Wang X, et al. Characterization of lung adenocarcinoma with a cribriform component reveals its association with spread through air spaces and poor outcomes[J]. Lung Cancer, 2019, 134: 238-244.
14 Mino-Kenudson M. Significance of tumor spread through air spaces(STAS)in lung cancer from the pathologist perspective[J]. Transl Lung Cancer Res, 2020, 9(3): 847-859.
15 Falay O, Selçukbiricik F, Tanju S, et al. The prediction of spread through air spaces with preoperative 18F-FDG PET/CT in cases with primary lung adenocarcinoma, its effect on the decision for an adjuvant treatment and its prognostic role[J]. Nucl Med Commun, 2021, 30(10): 14-19.
16 Chen D, She Y, Wang T, et al. Radiomics-based prediction for tumour spread through air spaces in stage I lung adenocarcinoma using machine learning[J]. Eur J Cardiothorac Surg, 2020, 58(1): 51-58.
17 Kuhn E, Morbini P, Cancellieri A, et al. Adenocarcinoma classification:patterns and prognosis[J]. Pathologica, 2018, 110(1): 5-11.
18 Pocha K, Mock A, Rapp C, et al. Surfactant expression defines an inflamed subtype of lung adenocarcinoma brain metastases that correlates with prolonged survival[J]. Clin Cancer Res, 2020, 26(9): 2231-2243.
19 Faruki H, Mayhew GM, Serody JS, et al. Lung adenocarcinoma and squamous cell carcinoma gene expression subtypes demonstrate significant differences in tumor immune landscape[J]. J Thorac Oncol, 2017, 12(6): 943-953.
20 Park CH, Kim TH, Lee S, et al. Correlation between maximal tumor diameter of fresh pathology specimens and computed tomography images in lung adenocarcinoma[J]. PLoS One, 2019, 14(1): e0211141.

备注/Memo

备注/Memo:
基金项目: 福建省科学技术厅资助项目(2019Y3007)
通信作者: 林 英, Email: 147509392@qq.com
更新日期/Last Update: 2021-06-20