|本期目录/Table of Contents|

[1]胡守军,李文涛,孙仲涛.MOB1表达水平与非小细胞肺癌切除术后疾病进展风险的相关性[J].中华肺部疾病杂志,2021,(03):332-334.[doi:10.3877/cma.j.issn.1674-6902.2021.03.017]
点击复制

MOB1表达水平与非小细胞肺癌切除术后疾病进展风险的相关性(PDF)

《中华肺部疾病杂志》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年03期
页码:
332-334
栏目:
临床研究
出版日期:
2021-06-20

文章信息/Info

Title:
-
作者:
胡守军1李文涛2孙仲涛1
236000 安徽,安徽医科大学附属阜阳人民医院胸外科1 200030 上海,上海交通大学附属上海市胸科医院胸外科2
Author(s):
-
关键词:
单极纺锤体-结合蛋白1 非小细胞肺癌 切除术 疾病进展
Keywords:
-
分类号:
R563
DOI:
10.3877/cma.j.issn.1674-6902.2021.03.017
摘要:
目的 探讨单极纺锤体-结合蛋白1(MOB1)表达水平与非小细胞肺癌(NSCLC)切除术后疾病进展风险的相关性。方法 选择2018年1月至2019年9月于我院就诊的85例NSCLC患者。收集患者临床资料,影像学资料,病理学资料及MOB1表达水平; 两组患者均行NSCLC切除术,术后随访1年,根据患者疾病进展情况分为进展组和非进展组。分析MOB1表达水平与NSCLC切除术后疾病进展风险的相关性。结果 随访1年,截至末次随访,共有12例患者因不同原因失访,最终纳入73例NSCLC切除术后患者,其中26例患者出现疾病进展为进展组,47例未出现疾病进展定义为无进展组。进展组T4分期、淋巴转移比例高于未进展组(P<0.05),MOB1表达水平、MLD E/I、VI-850/-950E-I低于未进展组(P<0.05),多因素Logistic回归分析显示淋巴转移(OR=2.570)、T分期(OR=2.096)、MOB1(OR=4.931)是NSCLC癌切除术后疾病进展风险的独立影响因素,ROC曲线分析显示,MOB1 AUC为0.835。结论 MOB1表达水平在NSCLC疾病进展患者中低表达。
Abstract:
-

参考文献/References:

1 Lee SS, Cheah YK. The interplay between microRNAs and cellular components of tumour microenvironment(TME)on non-small-cell lung cancer(NSCLC)progression[J]. J Immunol Res, 2019, 19(1): 3046379.
2 Nitanda H, Taguchi R, Yanagihara A, et al. [Surgical outcome of sublobar resection in high-risk patients with non-small cell lung cancer][J]. Kyobu Geka, 2019, 72(1): 17-22.
3 Dong S, Roberts SA, Chen S, et al. Survival after lobectomy versus sub-lobar resection in elderly with stage I NSCLC: a meta-analysis[J]. BMC Surg, 2019, 19(1): 38.
4 Liu J, Shi Z, Ma Y, et al. MOB1 inhibits malignant progression of colorectal cancer by targeting PAK2[J]. Onco Targets Ther, 2020, 13(1): 8803-8811.
5 Zhang J, Wu L, Lian C, et al. Nitidine chloride possesses anticancer property in lung cancer cells through activating Hippo signaling pathway[J]. Cell Death Discov, 2020, 6(1): 91.
6 Ando N, Tanaka K, Otsubo K, et al. Association of Mps one binder kinase activator 1(MOB1)expression with poor disease-free survival in individuals with non-small cell lung cancer[J]. Thorac Cancer, 2020, 11(10): 2830-2839.
7 Dietel M, Bubendorf L, Dingemans AM, et al. Diagnostic procedures for non-small-cell lung cancer(NSCLC): recommendations of the European expert group[J]. Thorax, 2016, 71(2): 177-184.
8 非小细胞肺癌辅助治疗胸外科共识专家组. 非小细胞肺癌术后辅助治疗中国胸外科专家共识(2018版)[J]. 中国肺癌杂志, 2018, 21(10): 731-737.
9 Jonna S, Subramaniam DS. Molecular diagnostics and targeted therapies in non-small cell lung cancer(NSCLC): an update[J]. Discov Med, 2019, 27(148): 167-170.
10 Tandberg DJ, Tong BC, Ackerson BG, et al. Surgery versus stereotactic body radiation therapy for stage I non-small cell lung cancer: A comprehensive review[J]. Cancer, 2018, 124(4): 667-678.
11 Gundogdu R, Hergovich A. MOB(Mps one Binder)proteins in the Hippo pathway and cancer[J]. Cells, 2019, 8(6): 569.
12 Kato W, Nishio M, To Y, et al. MOB1 regulates thymocyte egress and T-cell survival in mice in a YAP1-independent manner[J]. Genes Cells, 2019, 24(7): 485-495.
13 Yang H, Hu J, Chen J, et al. RNA-binding protein Musashi2 regulates Hippo signaling via SAV1 and MOB1 in pancreatic cancer[J]. Med Oncol, 2020, 37(9): 84.
14 Song J, Wang T, Chi X, et al. Kindlin-2 inhibits the Hippo signaling pathway by promoting degradation of MOB1[J]. Cell Rep, 2019, 29(11): 3664-3677.
15 Sasaki H, Kawano O, Endo K, et al. Human MOB1 expression in non-small-cell lung cancer[J]. Clin Lung Cancer, 2007, 8(4): 273-276.
16 Otsubo K, Goto H, Nishio M, et al. MOB1-YAP1/TAZ-NKX2.1 axis controls bronchioalveolar cell differentiation, adhesion and tumour formation[J]. Oncogene, 2017, 36(29): 4201-4211.
17 Taha Z, Janse van Rensburg HJ, Yang X. The Hippo pathway: immunity and cancer[J]. Cancers(Basel), 2018, 10(4): 94.
18 Ma S, Meng Z, Chen R, et al. The Hippo pathway: biology and pathophysiology[J]. Annu Rev Biochem, 2019, 88: 577-604.
19 Zheng Y, Pan D. The Hippo signaling pathway in development and disease[J]. Dev Cell, 2019, 50(3): 264-282.
20 Misra JR, Irvine KD. The Hippo signaling network and its biological functions[J]. Annu Rev Genet, 2018, 52(1): 65-87.
21 Boopathy GTK, Hong W. Role of Hippo pathway-YAP/TAZ signaling in angiogenesis[J]. Front Cell Dev Biol, 2019, 7(1): 49.
22 Driskill JH, Pan D. The Hippo pathway in liver homeostasis and pathophysiology[J]. Annu Rev Pathol, 2021, 16(1): 299-322.
23 Rausch V, Hansen CG. The Hippo pathway, YAP/TAZ, and the plasma membrane[J]. Trends Cell Biol, 2020, 30(1): 32-48.
24 Yamauchi T, Moroishi T. Hippo pathway in mammalian adaptive immune system[J]. Cells, 2019, 8(5): 398.
25 Kulaberoglu Y, Lin K, Holder M, et al. Stable MOB1 interaction with Hippo/MST is not essential for development and tissue growth control[J]. Nat Commun, 2017, 8(1): 695.
26 Kim E, Kang JG, Kang MJ, et al. O-GlcNAcylation on LATS2 disrupts the Hippo pathway by inhibiting its activity[J]. Proc Natl Acad Sci USA, 2020, 117(25): 14259-14269.
27 Hergovich A. Hippo signaling in mitosis: An updated view in light of the MEN pathway[J]. Methods Mol Biol, 2017, 1505(1): 265-277.
28 Zhang G, Dai S, Chen Y, et al. Aqueous extract of Taxus chinensis var. mairei regulates the Hippo-YAP pathway and promotes apoptosis of non-small cell lung cancer via ATF3 in vivo and in vitro[J]. Biomed Pharmacother, 2021, 138(1): 111506.

备注/Memo

备注/Memo:
通信作者: 胡守军, Email: hushoujun1130@sina.com
更新日期/Last Update: 2021-06-20