|本期目录/Table of Contents|

[1]邵世锋,程祥云,李,等.山羊重度原发性肺冲击伤模型的建立[J].中华肺部疾病杂志,2021,(06):723-728.[doi:10.3877/cma.j.issn.1674-6902.2021.06.004]
 Shao Shifeng,Cheng Xiangyun,Li Qi,et al.Study on severe blast lung injury mode of goats[J].,2021,(06):723-728.[doi:10.3877/cma.j.issn.1674-6902.2021.06.004]
点击复制

山羊重度原发性肺冲击伤模型的建立(PDF)

《中华肺部疾病杂志》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年06期
页码:
723-728
栏目:
论著
出版日期:
2021-12-20

文章信息/Info

Title:
Study on severe blast lung injury mode of goats
作者:
邵世锋1程祥云23曾 琳4张良潮2雷 洋1伍正彬1段朝霞2王耀丽1王建民2
400042 重庆,陆军(第三)军医大学第三附属医院战创伤医学中心创伤、烧伤与复合伤国家重点实验1 400042 重庆,武器杀伤生物效应评估研究室,陆军特色医学中心2 400037 重庆,陆军(第三)军医大学第二附属医院呼吸与危重症医学中心3 400042 重庆,野战卫生装备与器材研究室,陆军特色医学中心4
Author(s):
Shao Shifeng1 Cheng Xiangyun2 Li Qi3 Zeng Lin4 Zhang Liangchao2 Lei Yang1 Wu Zhengbin1 Duan Chaoxia2 Wang Yaoli1 Wang Jianmin2.
1Wound Trauma Medical Center, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400042, China; 2Department of Weapon Injury Bioeffect Assessment, Army Medical University, Chongqing 400042, China; 3Respiratory and Critical Care Medicine Center, Xinqiao Hospital, Army Medical University, Chongqing 400037, China; 4Department of Field Medical Equipment, Army Medical University, Chongqing 400042, China
关键词:
肺冲击伤 山羊 动物模型 新型爆炸物
Keywords:
Lung blast injury Goat Animal model New explosive
分类号:
R563
DOI:
10.3877/cma.j.issn.1674-6902.2021.06.004
摘要:
目的 建立山羊重度原发性肺冲击伤模型,为重度原发性肺冲击伤的特点和院前救治提供实验基础。方法 致伤驱动压初筛:选取山羊20只,随机分为4组(3 m组4只,4 m组7只,5 m组5只,6 m组4只),采用8 kg TNT当量新型爆炸物,以相同的环境条件下致伤,对比4组肺冲击伤伤情,分别于伤前、伤后0.5 h、3 h、6 h、24 h观测动物生命体征和血气分析、肺大体解剖测定肺组织含水量等,并对重伤山羊进行院前ABC救治。结果 3 m伤后15 min内死亡1只,4 m伤后颈内动脉穿刺置管后即刻死亡1只,4 m伤后24 h内死亡1只,其余4组动物均存活。重度原发性肺冲击伤伤情特点观察,伤后即刻出现持续呼吸窘迫、气道分泌物增多,动物心率加快。伤后15 min死亡山羊肺大体解剖出现广泛点片状出血和水肿,肺含水量显著增加,为重度冲击伤,AIS评分4分,肺内可见血栓性支气管树,气道内大量粉红色泡沫痰。重型原发性肺冲击伤肺出血、肺水肿严重,院前环甲膜切开、气管插管呼吸机辅助通气等常规救治难以逆转而死亡。结论 8 kg TNT当量爆炸物在3 m距离下,可建立山羊重度原发性肺冲击伤模型,此模型伤情稳定,可用于原发性肺冲击伤机制和院前救治的实验研究模型。常规气管插管接呼吸机辅助通气模式的治疗措施难以逆转重度原发性肺冲击伤。
Abstract:
Objective To establish an animal model of severe blast lung injury in goats, and to provide a way to study the characteristic and pre-hospital treatment of blast lung injury. Methods Randomly selected twenty goats and divided them into four groups(4 goats in the 3 m group, 7 goats in the 4 m group, 5 goats in the 5 m group and 4 goats in the 6 m group), and the blast lung injuries were made by 8 kg TNT-equivalency new explosive. Observed the vital signs, blood gas analysis, physiological index, gross anatomy of the lung, pathology, and lung tissue water content at the time of injury immediately(0 hour), 0.5 hours, 3 hours, 6 hours, 24 hours after the injury respectively. Pre-hospital ABC was performed on the severe injured goats. Result One died within 15 minutes after a 3-meter injury, one died immediately after the internal carotid artery puncture and catheterization after a 4-meter injury, and one died within 24 hours after a 4-meter injury. The remaining 4 groups of animals all survived. Severe primary lung impact injury in goats is characterized by continuous respiratory distress, increased airway secretions, and increased animal heart rate immediately after the injury. The goat died 15 minutes after the injury. There were extensive spotted hemorrhage and edema on the general anatomy of the lung. The lung water content increased significantly. It was a severe impact injury. The AIS score was 4 points. There were thrombotic bronchial trees in the lungs and a lot of pink foamy sputum in the airways. Pulmonary hemorrhage and pulmonary edema were severe due to severe primary pulmonary impact injury. Routine treatments such as pre-hospital cricothyrotomy and tracheal intubation ventilator assisted ventilation were difficult to reverse, then died. Conclusion An 8 kg TNT-equivalency explosive established a goat's severe primary lung injury model at a distance of 3 meters. This model was stable and could be used as an experimental research model for the mechanism of primary blast lung injury and pre-hospital treatment. Conventional tracheal intubation combined with ventilator-assisted ventilation was difficult to successfully treat such severe primary blast lung injury.

参考文献/References:

1 Yang C, Dong-Hai Z, Ling-Ying L, et al. Simulation of blast lung injury induced by shock waves of five distances based on finite element modeling of a three-dimensional rat[J]. Sci Rep, 2019, 9(1): 3440.
2 Dogrul BN, Kiliccalan I, Asci ES, et al. Blunt trauma related chest wall and pulmonary injuries: An overview[J]. Chin J Traumatol, 2020, 23(3): 125-138.
3 Scott TE, Johnston AM, Keene DD, et al. Primary blast lung injury: The UK military experience[J]. Mil Med, 2020, 185(5-6): e568-e572.
4 Chen K, Yang J, Xiao F, et al. Early peritoneal dialysis ameliorates blast lung injury by alleviating pulmonary edema and inflammation[J]. Shock, 2020, 53(1): 95-102.
5 张连阳, 李 阳. 爆炸伤的院前急救与早期救治策略[J]. 第三军医大学学报, 2020, 42(18): 1771-1776.
6 王正国. 原发肺冲击伤[J/CD]. 中华肺部疾病杂志(电子版), 2010, 3(04): 231-233.
7 王正国. 冲击伤的历史沿革与精准诊断[J]. 中华诊断学电子杂志, 2016, 4(01): 1-3.
8 Smith JE, Garner J. Pathophysiology of primary blast injury[J]. J R Army Med Corps, 2019, 165(1): 57-62.
9 Zheng XF, Zhu F, Fang H, et al. Management of combined massive burn and blast injury: A 20-year experience[J]. Burns, 2020, 46(1): 75-82.
10 Yang A, Cai H, Liang Y, et al. Comparison of blast lung injury in infant and adult rabbits[J]. Pediatr Pulmonol, 2020, 55(2): 474-483.
11 Loftis KL, Price J, Gillich PJ. Evolution of the abbreviated injury scale: 1990-2015[J]. Traffic Inj Prev, 2018, 19(sup2): S109-S113.
12 谭群友, 孙天宇, 王如文, 等. 肺部冲击伤临床诊疗规范(建议)[J]. 中华创伤杂志, 2014, 30(9): 865-867.
13 杨 策, 蒋建新, 杜 娟, 等. 2000年至2015年国内174起爆炸事故冲击伤诊治分析[J/CD]. 中华诊断学电子杂志, 2016, 4(1): 36-40.
14 Schmidt M, Pham T, Arcadipane A, et al. Mechanical ventilation management during extracorporeal membrane oxygenation for acute respiratory distress syndrome. An international multicenter prospective cohort[J]. Am J Respir Crit Care Med, 2019, 200(8): 1002-1012.
15 陈 玺, 周 健, 王耀丽, 等. 多发伤严重并发症的监护治疗[J]. 创伤外科杂志, 2017, 19(5): 325-329.
16 Wang X, Du J, Zhuang Z, et al. Incidence, casualties and risk characteristics of civilian explosion blast injury in China: 2000-2017 data from the state administration of work safety[J]. Mil Med Res, 2020, 7(1): 29.
17 Butler FK Jr, Holcomb JB, Shackelford S, et al. Advanced resuscitative care in tactical combat casualty care: TCCC guidelines change 18-01: 14 october 2018[J]. J Spec Oper Med, 2018, 18(4): 37-55.
18 Yi Yunfeng. Establishing the role of extracorporeal membrane oxygenation in the treatment of severe pulmonary blast injury[J]. J Traumat Surg, 2019, 21(07): 558-561.
19 Reva VA, Pochtarnik AA, Shelukhin DA, et al. Battlefield extracorporeal cardiopulmonary resuscitation for out-of-hospital cardiac arrest: A feasibility study during military exercises[J]. J Spec Oper Med, 2020, 20(4): 77-83.
20 Barnard EBG, Hunt PAF, Lewis PEH, et al. The outcome of patients in traumatic cardiac arrest presenting to deployed military medical treatment facilities: data from the UK joint theatre trauma registry[J]. J R Army Med Corps, 2018, 164(3): 150-154.
21 Hayashida K, Kinoshita T, Yamakawa K, et al. Potential impacts of a novel integrated extracorporeal-CPR workflow using an interventional radiology and immediate whole-body computed tomography system in the emergency department[J]. BMC Cardiovasc Disord, 2020, 20(1): 23.
22 Robson A. VA-ECMO improves survival in cardiogenic shock[J]. Nat Rev Cardiol, 2020, 17(11): 680.
23 Reyher C, Karst SR, Muellenbach RM, et al. Extracorporeal cardiopulmonary resuscitation(eCPR)for out-of-hospital cardiac arrest(OHCA): Retrospective analysis of a load and go strategy under the aspect of golden hour of eCPR[J]. Anaesthesist, 2021, 70(5): 376-382.
24 Kilner T, Stanton BL, Mazur SM. Prehospital extracorporeal cardiopulmonary resuscitation for out-of-hospital cardiac arrest: A retrospective eligibility study[J]. Emerg Med Australas, 2019, 31(6): 1007-1013.
25 Hifumi T, Inoue A, Takiguchi T, et al. Variability of extracorporeal cardiopulmonary resuscitation practice in patients with out-of-hospital cardiac arrest from the emergency department to intensive care unit in Japan[J]. Acute Med Surg, 2021, 8(1): e647.
26 Paone S, Clarkson L, Sin B, et al. Recognition of sympathetic crashing acute pulmonary edema(SCAPE)and use of high-dose nitroglycerin infusion[J]. Am J Emerg Med, 2018, 36(8): 1526.e5-1526.e7.
27 Scott TE, Das A, Haque M, et al. Management of primary blast lung injury: a comparison of airway pressure release versus low tidal volume ventilation[J]. Intensive Care Med Exp, 2020, 8(1): 26.
28 Boutillier J, Deck C, De Mezzo S, et al. Lung injury risk assessment during blast exposure[J]. J Biomech, 2019, 86: 210-217.
29 Parhar KKS, Zjadewicz K, Soo A, et al. Epidemiology, mechanical power, and 3-year outcomes in acute respiratory distress syndrome patients using standardized screening. An observational cohort study[J]. Ann Am Thorac Soc, 2019, 16(10): 1263-1272.

备注/Memo

备注/Memo:
基金项目: 高原新型爆炸武器伤特点及早期救治关键技术(ALJ18J001)重庆市医学重点专科建设项目
通信作者: 王耀丽, Email: wangylchen2005@aliyun.com
伍正彬, Email: 659926416@qq.com
更新日期/Last Update: 2021-12-20