|本期目录/Table of Contents|

[1]赵云峰,徐志华,巫梦娜,等.血清miR-133a在脓毒症并发ARDS中表达及预后的关系[J].中华肺部疾病杂志,2022,(01):38-41.[doi:10.3877/cma.j.issn.1674-6902.2022.01.009]
 Zhao Yunfeng,Xu Zhihua,Wu Mengna,et al.Expression of serum miR-133a in sepsis patients with acute respiratory distress syndrome and its relationship with prognosis[J].,2022,(01):38-41.[doi:10.3877/cma.j.issn.1674-6902.2022.01.009]
点击复制

血清miR-133a在脓毒症并发ARDS中表达及预后的关系(PDF)

《中华肺部疾病杂志》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2022年01期
页码:
38-41
栏目:
论著
出版日期:
2022-02-20

文章信息/Info

Title:
Expression of serum miR-133a in sepsis patients with acute respiratory distress syndrome and its relationship with prognosis
作者:
赵云峰徐志华巫梦娜顾维立
226000 江苏,南通市第一人民医院重症医学科
Author(s):
Zhao Yunfeng Xu Zhihua Wu Mengna Gu Weili.
Department of Critical Care Medicine, Nantong First People's Hospital, Nantong 22600, China
关键词:
急性呼吸窘迫综合征 微小核糖核酸-133a 脓毒症 预后
Keywords:
Acute respiratory distress syndrome Microribonucleic acid-133a Sepsis Prognosis
分类号:
R563
DOI:
10.3877/cma.j.issn.1674-6902.2022.01.009
摘要:
目的 分析血清微小核糖核酸(miR)-133a在脓毒症并发急性呼吸窘迫综合征(acute respiratory distress syndrome, ARDS)患者中的表达及与预后的关系。方法 选取2019年6月至2021年5月我院收治的65例脓毒症患者,根据是否并发ARDS,分为并发ARDS 35例和无ARDS 30例。随访28 d,统计脓毒症并发ARDS者预后,检测患者入住ICU第1天、第2天、第3天血清miR-133a水平,比较存活者和死亡者临床特征,采用Logistic回归分析判定影响脓毒症并发ARDS预后的因素,采用受试者工作曲线(ROC)分析血清miR-133a水平预测脓毒症并发ARDS者预后的价值。结果 并发ARDS入住ICU第1天、第2天、第3天血清miR-133a水平均高于无ARDS者(P<0.05); 随访28 d,脓毒症并发ARDS者病死率为40.00%; 死亡者入住ICU第1天、第2天、第3天血清miR-133a水平均高于存活者(P<0.05); 死亡者序贯器官衰竭(SOFA)评分、血管外肺水指数、第1天血清miR-133a水平与存活者比较,差异均有统计学意义(P<0.05); Logistic多因素回归分析显示SOFA评分、第1天血清miR-133a水平均是影响脓毒症并发ARDS者死亡的危险因素(P<0.05); ROC分析显示,第1天血清miR-133a水平预测脓毒症并发ARDS者死亡的最佳截断点为1.47,灵敏度为85.71%,特异度为90.48%,AUC为0.857。结论 脓毒症并发ARDS者血清miR-133a水平升高,血清miR-133a水平是影响脓毒症并发ARDS者死亡的危险因素,监测血清miR-133a水平变化,作为预测患者预后的指标。
Abstract:
Objective To explore the expression of serum microribonucleic acid(miR)-133a in patients with sepsis and acute respiratory distress syndrome and its relationship with prognosis. Methods 65 cases of sepsis admitted to the hospital from June 2019 to May 2021 were selected, according to whether they combined with acute respiratory distress syndrome, they were divided into concurrent group 35 and non-complicated group 30 cases. Follow-up for 28 days, the deaths of patients with sepsis combined with acute respiratory distress syndrome were counted, the serum level of miR-133a was detected on the first day, the second day, and the third day of the patient's admission to the ICU, the clinical characteristics of the dead and surviving patients were compared, Logistic regression analysis was used to determine the factors affecting the death of patients with sepsis combined with acute respiratory distress syndrome, and receiver operating curve(ROC)was used to analyze the value of serum miR-133a level in predicting the death of patients with sepsis combined with acute respiratory distress syndrome. Results The serum miR-133a levels of patients with concurrent group ICU admission on day 1, 2, and 3 were higher than those of non-complicated group patients(P<0.05). After 28 days of follow-up, the mortality of patients with sepsis and acute respiratory distress syndrome was 40.00%. Serum miR-133a levels of dead patients were higher than those of surviving patients on day 1, 2, and 3 of ICU admission(P<0.05). The SOFA score, extravascular lung water index, miR-133a level on day 1 of dead patients were compared with those of surviving patients, and the differences were statistically significant(P<0.05). Logistic multivariate regression analysis showed that Sequential Organ Failure(SOFA)score and serum miR-133a level on day 1 were independent risk factors for death in patients with sepsis and acute respiratory distress syndrome(P<0.05). ROC analysis showed that the best cut-off point for serum miR-133a level on day 1 to predict the death of patients with sepsis and acute respiratory distress syndrome was1.47, the sensitivity was 85.71%, the specificity was 90.48%, and the area under the curve(AUC)was 0.857. Conclusion The level of serum miR-133a in patients with sepsis and acute respiratory distress syndrome is abnormally increased, and the level of serum miR-133a is an independent risk factor affecting death in patients with sepsis and acute respiratory distress syndrome, clinical monitoring of serum miR-133a level changes can be used as a sensitive indicator to predict patient death.

参考文献/References:

1 凡 华, 张国新, 李 庚. MicroRNA-155联合MicroRNA-127对急性呼吸窘迫综合征预后的意义[J/CD]. 中华肺部疾病杂志(电子版), 2021, 14(6): 760-763.
2 郭亚威, 王 征, 曹 涛, 等. SOFA评分联合降钙素原在脓毒症中的应用价值[J]. 中国急救复苏与灾害医学杂志, 2020, 15(12): 1428-1431.
3 Font MD, Thyagarajan B, Khanna AK. Sepsis and septic shock-basics of diagnosis, pathophysiology and clinical decision making [J]. Med Clin North Am, 2020, 104(4): 573-585.
4 Stanski NL, Wong HR. Prognostic and predictive enrichment in sepsis[J]. Nat Rev Nephrol, 2020, 9(1): 20-31.
5 穆庆华, 李 明. 急性创伤患者发生早期ARDS的危险因素分析[J]. 中国急救复苏与灾害医学杂志, 2020, 15(3): 319-322.
6 Yehya N, Thomas NJ. Sepsis and pediatric acute respiratory distress syndrome [J]. J Pediatr Intensive Care, 2019, 8(1): 32-41.
7 Auriemma CL, Zhuo H, Delucchi K, et al. Acute respiratory distress syndrome-attributable mortality in critically ill patients with sepsis [J]. Intensive Care Med, 2020, 46(6): 1222-1231.
8 Englert JA, Bobba C, Baron RM. Integrating molecular pathogenesis and clinical translation in sepsis-induced acute respiratory distress syndrome[J]. JCI Insight, 2019, 4(2): 124-131.
9 Zhao J, Tan Y, Wang L, et al. Discriminatory ability and prognostic evaluation of presepsin for sepsis-related acute respiratory distress syndrome [J]. Sci Rep, 2020, 10(1): 9114-9120.
10 刘士琛, 王美菊, 刘 刚, 等. 肺炎合并低氧血症患者进展为ARDS危险因素分析[J/CD]. 中华肺部疾病杂志(电子版), 2021, 14(2): 164-168.
11 Lee LK, Medzikovic L, Eghbali M, et al. The role of MicroRNAs in acute respiratory distress syndrome and sepsis, from targets to therapies: A narrative review [J]. Anesth Analg, 2020, 131(5): 1471-1484.
12 Tian X, Li L, Fu G, et al. miR-133a-3p regulates the proliferation and apoptosis of intestinal epithelial cells by modulating the expression of TAGLN2[J]. Exp Ther Med, 2021, 22(2): 824-830.
13 中国医师协会急诊医师分会, 中国研究型医院学会休克与脓毒症专业委员会, 于学忠,等. 中国脓毒症/脓毒性休克急诊治疗指南(2018)[J]. 临床急诊杂志, 2018, 19(9): 567-588.
14 俞森洋. 对急性呼吸窘迫综合征诊断新标准(柏林定义)的解读和探讨[J]. 中国呼吸与危重监护杂志, 2013, 12(1): 1-4.
15 Fowler AA 3rd, Truwit JD, Hite RD, et al. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: The CITRIS-ALI randomized clinical trial [J]. JAMA, 2019, 322(13): 1261-1270.
16 Kerchberger VE, Bastarache JA, Shaver CM, et al. Haptoglobin-2 variant increases susceptibility to acute respiratory distress syndrome during sepsis[J]. JCI Insight, 2019, 4(21): 1312-1316.
17 Li S, Zhao D, Cui J, et al. Prevalence, potential risk factors and mortality rates of acute respiratory distress syndrome in Chinese patients with sepsis[J]. J Int Med Res, 2020, 48(2): 306-314.
18 Yadav B, Bansal A, Jayashree M. Clinical profile and predictors of outcome of pediatric acute respiratory distress syndrome in a PICU: A prospective observational study [J]. Pediatr Crit Care Med, 2019, 20(6): 263-273.
19 Munshi L, Walkey A, Goligher E, et al. Venovenous extracorporeal membrane oxygenation for acute respiratory distress syndrome: a systematic review and meta-analysis [J]. Lancet Respir Med, 2019, 7(2): 163-172.
20 Wei P, Xie Y, Abel PW, et al. Transforming growth factor(TGF)-β1-induced miR-133a inhibits myofibroblast differentiation and pulmonary fibrosis[J]. Cell Death Dis, 2019, 10(9): 670-677.
21 Qin LY, Wang MX, Zhang H. MiR-133a alleviates renal injury caused by sepsis by targeting BNIP3L[J]. Eur Rev Med Pharmacol Sci, 2020, 24(5): 2632-2639.
22 Martucci G, Arcadipane A, Tuzzolino F, et al. Identification of a circulating miRNA signature to stratify acute respiratory distress syndrome patients [J]. J Pers Med, 2020, 11(1): 15-22.
23 Chen L, He X, Xie Y, et al. Up-regulated miR-133a orchestrates epithelial-mesenchymal transition of airway epithelial cells [J]. Sci Rep, 2018, 8(1): 155-159.
24 Mendes FC, Paciência I, Ferreira AC, et al. Development and validation of exhaled breath condensate microRNAs to identify and endotype asthma in children [J]. PLoS One, 2019, 14(11): 983-988.
25 Yang M, Wang LI. MALAT1 knockdown protects from bronchial/tracheal smooth muscle cell injury via regulation of microRNA-133a/ryanodine receptor 2 axis [J]. J Biosci, 2021, 46(7): 28-36.
26 薛雨晨, 薛晓梅, 何 斌. 微小RNA-133a和微小RNA-499a-5p在脓毒性心肌病中的诊断和预后价值[J]. 国际麻醉学与复苏杂志, 2019, 40(8): 759-764.
27 Shao Y, Chong L, Lin P, et al. MicroRNA-133a alleviates airway remodeling in asthtama through PI3K/AKT/mTOR signaling pathway by targeting IGF1R[J]. J Cell Physiol, 2019, 234(4): 4068-4080.
28 Chen L, Xie W, Wang L, et al. MiRNA-133a aggravates inflammatory responses in sepsis by targeting SIRT1 [J]. Int Immunopharmacol, 2020, 52(4): 229-236.

备注/Memo

备注/Memo:
基金项目: 江苏省自然科学基金资助项目(BK20180267)
南通市市级科技计划项目(JCZ20084)
南通大学临床医学专项项目(2019LY003)
通信作者: 顾维立, Email: guweili1980@163.com
更新日期/Last Update: 2022-02-20