|本期目录/Table of Contents|

[1]黄朝旺,韦雅琴,许发琼,等.mmu_circ_0001033过表达慢病毒载体的构建与鉴定[J].中华肺部疾病杂志,2022,(02):141-145.[doi:10.3877/cma.j.issn.1674-6902.2022.02.001]
 Huang Chaowang,Wei Yaqin,et al.Construction and identification of mmu_circ_0001033 overexpression lentiviral vector[J].,2022,(02):141-145.[doi:10.3877/cma.j.issn.1674-6902.2022.02.001]
点击复制

mmu_circ_0001033过表达慢病毒载体的构建与鉴定(PDF)

《中华肺部疾病杂志》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2022年02期
页码:
141-145
栏目:
论著
出版日期:
2022-04-20

文章信息/Info

Title:
Construction and identification of mmu_circ_0001033 overexpression lentiviral vector
作者:
黄朝旺13韦雅琴2许发琼3徐康乔2胡 巧1张 静1夏世金2胡明冬1
400037 重庆,陆军(第三)军医大学第二附属医院老年与特勤医学科1、呼吸与危重症医学中心3 200040 上海,复旦大学附属华东医院上海市老年医学研究所2
Author(s):
Huang Chaowang1 3 Wei Yaqin2 Xu Faqiong3 Xu Kangqiao2 Hu Qiao1 Zhang Jing1 Xia Shijin2 Hu Mingdong1.
1Department of Geriatrics and Special Services Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; 2Institute of Gerontology, Huadong Hospital, Fudan University, Shanghai 200040, China; 3Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
关键词:
mmu_circ_0001033 环状RNA 慢病毒 肺动脉高压
Keywords:
Mmu_circ_0001033 Circular RNA Lentivirus Pulmonary hypertension
分类号:
R563
DOI:
10.3877/cma.j.issn.1674-6902.2022.02.001
摘要:
目的 构建环状RNA mmu_circ_0001033慢病毒表达载体,作为在低氧性肺动脉高压功能学实验研究的基础。方法 首先设计引物将目的基因片段从原质粒上扩增下来,通过引物两端所含无缝克隆识别位点将其重组到酶切后的过表达载体上; 将连接产物转入制备好的细菌感受态细胞,而后将其单克隆菌落送测序公司进行测序鉴定。其次通过PCR产物跑胶和测序验证成环情况。最后用构建的重组表达载体和包装质粒共同转染293T细胞,包装慢病毒,收集病毒原液,超滤浓缩,并测定滴度。结果 经过比对,重组克隆中插入片段序列与目的片段序列完全一致,表明质粒构建成功。PCR产物后经sanger测序确认环化位点处序列完全正确。将构建的过表达载体测序结果和质粒构建方案基因比对,重组克隆中插入片段序列与目的片段序列与预期完全一致,可实现转染质粒后目的基因的表达,PCR产物跑胶和测序结果表明mmu_circ_0001033成环成功。PCR产物跑胶和测序结果表明mmu_circ_0001033成环成功。最后通过比较RT-qPCR测定病毒滴度值为2.09×108 TU/ml。 结论 成功构建环状RNA mmu_circ_0001033慢病毒表达载体,能稳定转染293T细胞,可用于后续细胞实验。
Abstract:
Objective Construction of the mmu_circ_0001033 lentiviral expression vector as the basis for the study of its functional experimental study in hypoxic pulmonary hypertension. Methods First, primers were designed to amplify the target gene fragment from the original plasmid, and recombined it into the overexpression vector after digestion through the seamless clone recognition sites contained at both ends of the primer, transferred the ligation product into the prepared bacterial sensation Then sent its monoclonal colony to a sequencing company for sequencing and identification. The looping condition was verified by running the gel and sequencing the PCR product. Finally, the constructed recombinant expression vector and packaging plasmid were used to co-transfect 293T cells, packaged the lentivirus, collected the virus stock, concentrated by ultrafiltration, and determined the titer. Results The sequence of the inserted fragment in the recombinant clone was exactly the same as the sequence of the target fragment, indicating that the plasmid was constructed successfully. The PCR product was confirmed by sanger sequencing to confirm the correct sequence at the cyclarization site. By comparing the sequencing results of the constructed overexpression vector and the plasmid construction scheme, the insert sequence and the target fragment sequence in the recombinant clone are exactly as expected, which can realize the expression of the target gene after transfection of the plasmid, the PCR product running gel and sequencing results showed that mmu_circ_0001033 was successfully looped, the PCR product running gel and sequencing results showed that mmu_circ_0001033 was successfully looped. Finally, the virus titer value determined by RT-qPCR was 2.09×108 TU/ml. Conclusion The mmu_circ_0001033 lentiviral expression vector was successfully constructed, which can stably transfect 293T cells and can be used for subsequent cell experiments.

参考文献/References:

1 Norbert FV, Rubin MT. Hypoxia-induced pulmonary vascular remodeling:a model for what human disease?[J]. J Clin investigation, 2000, 106(6): 733-738.
2 Larissa AS, Steven SL. Vascular remodeling in pulmonary hypertension[J]. J Mol Med(Berlin Germany), 2013, 91(3): 297-309.
3 Marius MH, Hossein-Ardeschir G, Ekkehard G, et al. Pulmonary hypertension[J]. Deutsch Arztebl Int, 2017, 114(5): 73-84.
4 Hansmann G. Pulmonary hypertension in infants, children, and young adults[J]. J Am Coll Cardiol, 2017, 69(20): 2551-2569.
5 Devashis M, Girija GK. Pediatric pulmonary hypertension: Definitions, mechanisms, diagnosis, and treatment[J]. Comprehensive Physiology, 2021, 11(3): 2135-2190.
6 尹连红, 杨悦悦, 郑玲俐. 肺动脉高压发病机制及中药干预研究进展[J]. 辽宁中医药大学学报, 2022, 24(1): 213-220.
7 胡盼盼, 孙增先, 姜艳娇, 等. 肺动脉高压发病机制的最新研究进展[J]. 重庆医学, 2022, 51(4): 678-682.
8 徐康乔, 夏世金. 低氧性肺动脉高压发生机制与诊治新策略[J/CD]. 中华肺部疾病杂志(电子版), 2020, 13(2): 127-133.
9 Eleni A, Leni SJ, Frank JS. Non-coding RNA networks in cancer[J]. Nat Rev Cancer, 2018, 18(1): 5-18.
10 Michaël D, Manel E. Lung cancer epigenetics: From knowledge to applications[J]. Semin Cancer Biol, 2018, 51: 116-128.
11 Huang J, Peng J, Guo LL. Non-coding RNA: a new tool for the diagnosis, prognosis, and therapy of small cell lung cancer[J]. J Thorac Oncol, 2015, 10(1): 28-37.
12 Lasse SK, Theresa J, Henrik H, et al. The emerging roles of circRNAs in cancer and oncology[J]. Nat Rev Clin Oncol, 2022, 19(3): 188-206.
13 Deng L. LncPTSR triggers vascular remodeling in pulmonary hypertension by regulating [Ca2+]i in pulmonary arterial smooth muscle cells[J]. Am J Respir Cell Mol Biol, 2022. doi: 10.1165/rcmb.2020-0480OC.
14 Feng XN, Wang KF, Yang T, et al. LncRNA-GAS5/miR-382-3p axis inhibits pulmonary artery remodeling and promotes autophagy in chronic thromboembolic pulmonary hypertension[J]. Genes & Genomics, 2022.doi: 10.1007/s13258-021-01202-z
15 Susana CR, Lucía F, Edurne B, et al. MicroRNA nanotherapeutics for lung targeting. Insights into pulmonary hypertension [J]. Int J Mol Sci, 2020, 21(9): 3253.
16 Zhang JT, Li YY, Qi J, et al. calm4Circ- Serves as an sponge to regulate Myo10(Myosin 10)and promote pulmonary artery smooth muscle proliferation[J]. Hypertension, 2020, 75(3): 668-679.
17 Xu SL, Deng YS, Liu J, et al. Regulation of circular RNAs act as ceRNA in a hypoxic pulmonary hypertension rat model [J]. Genomics, 2021, 113: 11-19.
18 Zhuo S, Jiang H, Li M, et al. Circular RNA hsa_circ_0016070 is associated with pulmonary arterial hypertension by promoting PASMC proliferation[J]. Molecular therapy, 2019, 18: 275-284.
19 Wang J, Zhu MC, Pan J, et al. Circular RNAs: a rising star in respiratory diseases[J]. Res Research, 2019, 20(3): 1-10.
20 Zhang JR, Sun HJ. MiRNAs, lncRNAs, and circular RNAs as mediators in hypertension-related vascular smooth muscle cell dysfunction[J]. Hypertension Res, 2021, 44(2): 129-146.
21 王灵霞, 严玉兰, 袁海涛, 等. CircRNA_23113抑制肺腺癌细胞的增殖和迁移[J]. 基础医学与临床, 2022, 42(1): 82-88.
22 王 坚, 胡明冬, 唐晓丹, 等. 慢病毒介导环状RNA mmu-circ-0001033过表达抑制低氧性小鼠肺动脉平滑肌细胞增殖的实验研究[J/CD]. 中华肺部疾病杂志(电子版), 2018, 11(1): 39-43.
23 Houghton BC, Booth C, Thrasher AJ. Lentivirus technologies for modulation of the immune system[J]. Curr Opin Pharmacology, 2015, 24: 119-127.
24 Douglas AR, Christopher PD, Adam VK, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference[J]. Nature genetics, 2003, 33(3): 401-406.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金面上项目(81870044,81873421); 高校基础研究课题(2020-2017-075) 通信作者: 胡明冬, Email: huhanshandd@163.com 夏世金, Email: xiashijinhd@163.com
更新日期/Last Update: 2022-04-20