1 Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
2 Zhu S, Yao R, Li Y, et al. Lysosomal quality control of cell fate: a novel therapeutic target for human diseases[J]. Cell death & disease, 2020, 11(9): 817.
3 Oot RA, Couoh-Cardel S, Sharma S, et al. Breaking up and making up: The secret life of the vacuolar H(+)-ATPase[J]. Protein Sci, 2017, 26(5): 896-909.
4 Pu J, Guardia CM, Keren-Kaplan T, et al. Mechanisms and functions of lysosome positioning[J]. J Cell Sci, 2016, 129(23): 4329-4339.
5 Settembre C, Fraldi A, Medina DL, et al. Signals from the lysosome:a control centre for cellular clearance and energy metabolism[J]. Nat Rev Mol Cell Biol, 2013, 14(5): 283-296.
6 Perera RM, Zoncu R. The lysosome as a regulatory hub[J]. Annu Rev Cell Dev Biol, 2016, 32: 223-253.
7 Carroll B, Dunlop E. The lysosome: a crucial hub for AMPK and mTORC1 signalling[J]. Biochemical J, 2017, 474(9): 1453-1466.
8 Perera RM, Di Malta C, Ballabio A. MiT/TFE family of transcription factors, lysosomes, and cancer[J]. Annu Rev Cancer Biol, 2019, 3: 203-222.
9 Napolitano G, Ballabio A. TFEB at a glance[J]. J Cell Sci, 2016, 129(13): 2475-2481.
10 Serrano-Puebla A, Boya P. Lysosomal membrane permeabilization in cell death: new evidence and implications for health and disease[J]. Ann N Y Acad Sci, 2016, 1371(1): 30-44.
11 Li L, Tan J, Miao Y, et al. ROS and Autophagy: Interactions and molecular regulatory mechanisms[J]. Cell Mol Neurobiol, 2015, 35(5): 615-621.
12 Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
13 Fennelly C, Amaravadi RK. Lysosomal Biology in Cancer[J]. Methods Mol Biol, 2017, 1594: 293-308.
14 Armstrong J. Yeast vacuoles: more than a model lysosome[J]. Trends Cell Biol, 2010, 20(10): 580-585.
15 Mallat A, Lodder J, Teixeira-Clerc F, et al. Autophagy: a multifaceted partner in liver fibrosis[J]. Biomed Res Int, 2014, 2014: 869390.
16 Gong JS, Kim GJ. The role of autophagy in the placenta as a regulator of cell death[J]. Clin Exp Reprod Med, 2014, 41(3): 97-107.
17 Yan X, Zhou R, Ma Z. Autophagy-cell survival and death[J]. Adv Exp Med Biol, 2019, 1206: 667-696.
18 Galluzzi L, Pietrocola F, Bravo-san Pedro JM, et al. Autophagy in malignant transformation and cancer progression[J]. Embo J, 2015, 34(7): 856-880.
19 Chaabane W, User SD, El-Gazzah M, et al. Autophagy, apoptosis, mitoptosis and necrosis: interdependence between those pathways and effects on cancer[J]. Arch Immunol Ther Exp(Warsz), 2013, 61(1): 43-58.
20 Kos J, Mitrovic A,Mirkovic B. The current stage of cathepsin B inhibitors as potential anticancer agents[J]. Future Med Chem, 2014, 6(11): 1355-1371.
21 Xu M, Yang L, Rong JG, et al. Inhibition of cysteine cathepsin B and L activation in astrocytes contributes to neuroprotection against cerebral ischemia via blocking the tBid-mitochondrial apoptotic signaling pathway[J]. Glia, 2014, 62(6): 855-880.
22 Murphy M, Carlson JA, Keough MP, et al. Hypoxia regulation of the cell cycle in malignant melanoma: putative role for the cyclin-dependent kinase inhibitor p27[J]. J Cutan Pathol, 2004, 31(7): 477-482.
23 Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012[J]. Cell Death Differ, 2012, 19(1): 107-120.
24 Gong Y, Fan Z, Luo G, et al. The role of necroptosis in cancer biology and therapy[J]. Mol Cancer, 2019, 18(1): 100.
25 Liu S, Li Y, Choi HMC, et al. Lysosomal damage after spinal cord injury causes accumulation of RIPK1 and RIPK3 proteins and potentiation of necroptosis[J]. Cell Death Dis, 2018, 9(5): 476.
26 Tonnessen-Murray CA, Frey WD, Rao SG, et al. Chemotherapy-induced senescent cancer cells engulf other cells to enhance their survival[J]. J Cell Biol, 2019, 218(11): 3827-3844.
27 Sikora E, Bielak-Zmijewska A, Mosieniak G. Targeting normal and cancer senescent cells as a strategy of senotherapy[J]. Ageing Res Rev, 2019, 55: 100941.
28 Shi J, Gao W, Shao F. Pyroptosis: Gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci, 2017, 42(4): 245-254.
29 He Y, Hara H, Núñ EZG. Mechanism and Regulation of NLRP3 Inflammasome Activation[J]. Trends Biochem Sci, 2016, 41(12): 1012-1021.
30 Xie Y, Hou W, Song X, et al. Ferroptosis: process and function[J]. Cell Death Differ, 2016, 23(3): 369-379.
31 Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285.
32 Gao H, Bai Y, Jia Y, et al. Ferroptosis is a lysosomal cell death process[J]. Biochem Biophys Res Commun, 2018, 503(3): 1550-1556.
33 Davidson SM, Vander Heiden MG. Critical functions of the lysosome in cancer biology[J]. Annu Rev Pharmacol Toxicol, 2017, 57: 481-507.
34 Kazmi F, Hensley T, Pope C, et al. Lysosomal sequestration(trapping) of lipophilic amine(cationic amphiphilic)drugs in immortalized human hepatocytes(Fa2N-4 cells)[J]. Drug Metab Dispos, 2013, 41(4): 897-905.
35 Gotink KJ, Broxterman HJ, Labots M, et al. Lysosomal sequestration of sunitinib: a novel mechanism of drug resistance[J]. Clin Cancer Res, 2011, 17(23): 7337-7346.
36 Zhitomirsky B, Assaraf Y. Lysosomal sequestration of hydrophobic weak base chemotherapeutics triggers lysosomal biogenesis and lysosome-dependent cancer multidrug resistance[J]. Oncotarget, 2015, 6(2): 1143-1156.
37 Chen P, Guo H, Chen J, et al. The chemotherapeutic drug boanmycin induces cell senescence and senescence-associated secretory phenotype factors, thus acquiring the potential to remodel the tumor microenvironment[J]. Anticancer Drugs, 2016, 27(2): 84-88.
38 Sun L, Zhao Y, Li X, et al. A lysosomal-mitochondrial death pathway is induced by solamargine in human K562 leukemia cells[J]. Toxicol In Vitro, 2010, 24(6): 1504-1511.
39 Yamagishi T, Sahni S, Sharp DM, et al. P-glycoprotein mediates drug resistance via a novel mechanism involving lysosomal sequestration[J]. J Biol Chem, 2013, 288(44): 31761-31771.
40 Chapuy B, Koch R, Radunski U, et al. Intracellular ABC transporter A3 confers multidrug resistance in leukemia cells by lysosomal drug sequestration[J]. Leukemia, 2008, 22(8): 1576-1586.
41 Stefan SM, Wiese M. Small-molecule inhibitors of multidrug resistance-associated protein 1 and related processes: A historic approach and recent advances[J]. Med Res Rev, 2019, 39(1): 176-264.
42 Behrmann H, Lurick A, Kuhlee A, et al. Structural identification of the Vps18 β-propeller reveals a critical role in the HOPS complex stability and function[J]. J Biol Chem, 2014, 289(48): 33503-33512.
43 Krämer L, Ungermann C. HOPS drives vacuole fusion by binding the vacuolar SNARE complex and the Vam7 PX domain via two distinct sites[J]. Mol Biol Cell, 2011, 22(14): 2601-2611.
44 Lürick A, Kuhlee A, Bröcker C, et al.The Habc domain of the SNARE Vam3 interacts with the HOPS tethering complex to facilitate vacuole fusion[J]. J Biol Chem, 2015, 290(9): 5405-5413.
45 Takemoto K, Ebine K, Askani JC, et al. Distinct sets of tethering complexes, SNARE complexes, and Rab GTPases mediate membrane fusion at the vacuole in Arabidopsis[J]. Proc Natl Acad Sci U S A, 2018, 115(10): E2457-E2466.