|本期目录/Table of Contents|

[1]黄婧,王蕾.VitD在降低PM2.5对肺泡上皮细胞毒性中的影响分析[J].中华肺部疾病杂志,2022,(04):481-485.[doi:10.3877/cma.j.issn.1674-6902.2022.04.006]
 Huang Jing,Wang Lei..Effect of VitD on reducing the cytotoxicity of PM2.5 to alveolar epithelial cells[J].,2022,(04):481-485.[doi:10.3877/cma.j.issn.1674-6902.2022.04.006]
点击复制

VitD在降低PM2.5对肺泡上皮细胞毒性中的影响分析(PDF)

《中华肺部疾病杂志》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2022年04期
页码:
481-485
栏目:
论著
出版日期:
2022-08-20

文章信息/Info

Title:
Effect of VitD on reducing the cytotoxicity of PM2.5 to alveolar epithelial cells
作者:
黄婧1王蕾2
710061 西安,西安交通大学第一附属医院风湿免疫科1 710004 西安,西安交通大学第二附属医院呼吸与危重症科2
Author(s):
Huang Jing1 Wang Lei2.
1Department of Rheumatism and Immunology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China; 2Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
关键词:
PM2.5 维生素D 多环芳香烃 生物毒性
Keywords:
PM2.5 VitaminD Polycyclic aromatic hydrocarbons Biological toxicity
分类号:
R392.12
DOI:
10.3877/cma.j.issn.1674-6902.2022.04.006
摘要:
目的 分析维生素D(vitamin D, VitD)在降低PM2.5对肺泡上皮细胞毒性中的影响。方法 采用透射电子显微镜和激光诱导荧光分析对比VitD处理前后,PM2.5的毒性能力。MMT观察VitD处理前后细胞生存率,分析PM2.5对A549的毒性影响。结果 VitD作用后的PM2.5平均粒径减小5.5 nm,颗粒聚结和团聚更为明显,颗粒平均条纹长度增加、弯曲度减小,差异有统计学意义。PM2.5条纹间距无统计学差异,有明显减小,接近0.06 nm。VitD溶液从PM2.5解吸3环和4环多环芳香烃(polycyclic aromatic hydrocarbons, PAHs),减少PM2.5表面附着的致病性PAHs。PM2.5可引起肺上皮细胞A549生存率明显下降,给予VitD干预后,PM2.5对A549细胞生存率的抑制改善了54.7%,PM2.5的生物毒性降低。结论 VitD可减少PM2.5上吸附的致病性PAHs,抑制其致病活性,减小PM2.5对肺上皮细胞的毒性。
Abstract:
Objective To investigate the decreased effect of vitamin D(VitD)on the cytotoxicity of alveolar epithelial cells by PM2.5. Methods Comparison of PM2.5 toxicity between without and with VitD treatment by transmission electron microscopy and laser induced fluorescence. MTT observed the effect of PM2.5 on the survival rate of A549 cells before and after VitD treatment. Results After the treatment of VitD, the average diameter of PM2.5 was decreased 5.5 nm. The particle agglomeration and coalescence were more obvious. The average fringe length increased and fringe tortuosity decreased, the statistics difference was significant. There was no statistical difference in the fringe spacing of particle, but there was a significant reduction, which was close to 0.06 nm. VitD solution desorbed 3-ring and 4-ring PAHs from PM2.5, reducing pathogenic PAHs on PM2.5. PM2.5 can cause a significant lung epithelial cells A549 cell death, and this effect is significantly reversed by 54.7% after VitD intervention, indicating that the biotoxicity of PM2.5 is reduced by VitD. Conclusion VitD can strip the pathogenic PAHs from PM2.5. Then it can significantly inhibit the pathogenic activity of PM2.5 and reduce the cytotoxicity of PM2.5.

参考文献/References:

1 Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010[J]. Lancet, 2012, 380: 2224-2260.
2 Xudong Liu, Yuchao Zhang, Xu Yang. Vitamin E reduces the extent of mouse brain damage induced by combined exposure to formaldehyde and PM2.5[J]. Ecotoxicol Environ Saf, 2019, 172(15): 33-39.
3 林红卫, 金发光. PM2.5致呼吸系统损伤的机制及药物防治进展[J/CD]. 中华肺部疾病杂志(电子版), 2020, 13(3): 407-410.
4 Nsonwu-Anyanwu AC, Ndudi Idenyi A, Offor SJ, et al. Association of exposure to polycyclic aromatic hydrocarbons with inflammation, oxidative DNA damage and renal-pulmonary dysfunctions in barbecue makers in Southern Nigeria[J]. Rep Biochem Mol Biol, 2022, 11(1): 74-82.
5 Zhang N, Geng C, Xu J, et al. Characteristics, source contributions, and source-specific health risks of PM2.5-bound polycyclic aromatic hydrocarbons for senior citizens during the heating season in Tianjin, China[J]. Int J Environ Res Public Health, 2022, 19(8): 4440.
6 Peng SM, Yu N, Che J, et al. Total, bioavailable and free 25-hydroxyvitamin D are associated with the prognosis of patients with non-small cell lung cancer.[J]. Cancer Causes Control, 2022, 33(7): 983-993.
7 Yang D, Chen L, Yang Y, et al. Effect of PM2.5 exposure on Vitamin D status among pregnant women: A distributed lag analysis[J]. Ecotoxicol Environ Saf, 2022, 239: 113642.
8 Zhongqiu Li, Liang Qiu, Xiaobei Cheng, et al. The evolution of soot morphology and nanostructure in laminar diffusion flame of surrogate fuels for diesel[J]. Fuel, 2018, 211: 517-528.
9 Zhu XM, Wang Q, Xing WW, et al. PM2.5 induces autophagy-mediated cell death via NOS2 signaling in human bronchial epithelium cells[J]. Int J Biol Sci, 2018, 14(5): 557-564.
10 Zhongyin Z, Wei W, Juan X, et al. Epigallocatechin gallate relieved PM2.5-induced lung fibrosis by inhibiting oxidative damage and epithelial-mesenchymal transition through AKT/mTOR pathway[J]. Oxid Med Cell Longev, 2022: 7291774.
11 Jin L, Deng L, Bartlett M, et al. A novel herbal extract blend product prevents particulate matters-induced inflammation by improving gut microbiota and maintaining the integrity of the intestinal barrier[J]. Nutrients, 2022, 14(10): 2010.
12 Scaranti MC, Gde Júnior, Hoff AO. Vitamin D and cancer: Does it really matter?[J]. Current Opin Oncol, 2016, 28: 205-209.
13 Hansdottir S, Monick MM, Hinde SL, et al. Respiratory epithelial cells convert inactive vitamin D to its active form: Potential effects on host defense[J]. J Immunol, 2008, 181: 7090-7099.
14 Ginde AA, Mansbach JM, CA. JC. Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the Third National Health and Nutrition Examination Survey[J]. Arch Int Med, 2009, 169: 384-390.
15 Brehm JM, Celedón JC, Soto-Quiros ME, et al. Serum vitamin D levels and markers of severity of childhood asthma in Costa Rica[J]. Am J Resp Crit Care Med, 2009, 179: 765-771.
16 Luo CM, Feng J, Zhang J, et al. 1,25-Vitamin D3 protects against cooking oil fumes-derived PM2.5-induced cell damage through its anti-inflammatory effects in cardiomyocytes[J]. Ecotoxicol Environ Saf, 2019, 179: 249-256.
17 Fabrice Ciesielski, Yoshiteru Sato, Yassmine Chebaro, et al. Structural basis for the accommodation of bis-and tris-aromatic derivatives in vitamin D nuclear receptor[J]. J Med Chem, 2012, 55(19): 8440-8449.
18 Han Weiqiang, Lu Yao, Jin Chao, et al. Study on influencing factors of particle emissions from a RCCI engine with variation of premixing ratio and total cycle energy[J]. Energy, 2020, 202: 117707.
19 Kholghy M, Saffaripour M, Yip C, et al. The evolution of soot morphology in a laminar coflow diffusion flame of a surrogate for Jet A-1[J]. Combust Flame, 2013, 160: 2119-2130.
20 Dresselhaus MS, Dresselhaus G, PC. E: Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications[M]. San Diego: Academic Press, 1996: 112-214.
21 Zhang Y, Liu P, Li Y, et al. Study on fluorescence spectroscopy of PAHs with different molecular structures using laser-induced fluorescence(LIF)measurement and TD-DFT calculation[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2020, 224: 117450.
22 Hong ZY, Guo J, Yuan J, et al. Study on adsorption and controlled release of vitamin B_3 and vitamin C by activated carbons[J]. Appl Chem Industry, 2009, 38(12): 1742-1745.
23 Ding W, Jin H, Zhao Q, et al. Dissolution of polycyclic aromatic hydrocarbons in supercritical water in hydrogen production process: A molecular dynamics simulation study[J]. Int J Hydrogen Energy, 2020, 45(52): 28062-28069.
24 Woolgar P, Jones K. Studies on the dissolution of polycyclic aromatic hydrocarbons from contaminated materials using a novel dialysis tubing experimental method[J]. Environmental Sci Technol, 1999, 33: 2118-2126.
25 Zhang Y, Maier W, Miller R. Effect of Rhamnolipids on the Dissolution, Bioavailability, and Biodegradation of Phenanthrene[J]. Environmental Sci Technol, 1997, 31: 2211-2217.
26 Lee K, Kostarelos K, Fennell D. Modeling the transport of dissolved contaminants originating from a NAPL source containing PAH compounds in groundwater[J]. J Environ Eng Sci, 2011, 3: 541-548.
27 Hussein T, Ismail Z. Desorption of selected PAHs as individuals and as a ternary PAH mixture within a water-soil-nonionic surfactant system[J]. Environ Technol, 2012, 34: 351-361.
28 Abbas I, Saint-Georges F, Billet S, et al. Air pollution particulate matter(PM2.5)-induced gene expression of volatile organic compound and/or polycyclic aromatic hydrocarbon-metabolizing enzymes in an in vitro coculture lung model[J]. Toxicol In Vitro, 2009, 23(1): 37-46.
29 Udomratana Vattanasit, Panida Navasumrit, Man Bahadur Khadka, et al. Oxidative DNA damage and inflammatory responses in cultured human cells and in humans exposed to traffic-related particles[J]. Int J Hyg Environ Health, 2014, 217(1): 23-33.
30 Zheng L, Dong H, Zhao W, et al. An air-liquid interface organ-level lung microfluidics platform for analysis on molecular mechanisms of cytotoxicity induced by cancer-causing fine particles[J]. ACS Sens, 2019, 4(4): 907-917.
31 Xu F, Xu A, Guo Y, et al. PM2.5 exposure induces alveolar epithelial cell apoptosis and causes emphysema through p53/Siva-1[J]. Eur Rev Med Pharmacol Sci, 2020, 24(7): 3943-3950.
32 Xia R, Fang N, Yang Y, et al. PM2.5 promotes apoptosis of alveolar epithelial cells via targeting ROS/p38 signaling pathway and thus leads to emphysema in mice[J]. Minerva Med, 2020.

备注/Memo

备注/Memo:
基金项目: 陕西省自然科学基础研究计划(2022JQ-761) 中国博士后科学基金会(2021M702610) 中央高校基本科研业务费(xzy012020060)
通信作者: 王 蕾, Email: wl860806wb@163.com
更新日期/Last Update: 2022-08-20