1 王洪武, 金发光. 晚期非小细胞肺癌多域整合治疗策略[J/CD]. 中华肺部疾病杂志(电子版), 2022, 15(4): 457-461.
2 王 园, 杨 懿, 牟云飞, 等. 可切除非小细胞肺癌患者术后奥西替尼靶向治疗分析[J/CD]. 中华肺部疾病杂志(电子版), 2022, 15(5): 567-660.
3 Duma N, Santana-Davila R, Molina JR. Non-small cell lung cancer:Epidemiology, screening, diagnosis, and treatment[J]. Mayo Clin Proc, 2019, 94(8): 1623-1640.
4 Wang L, Ma Q, Yao R, et al. Current status and development of anti-PD-1/PD-L1 immunotherapy for lung cancer[J]. Int Immunopharmacol, 2020, 79: 106088.
5 Ojlert AK, Halvorsen AR, Nebdal D, et al. The immune microenvironment in non-small cell lung cancer is predictive of prognosis after surgery[J]. Mol Oncol, 2019, 13(5): 1166-1179.
6 Bianco A, Perrotta F, Barra G, et al. Prognostic factors and biomarkers of responses to immune checkpoint inhibitors in lung cancer[J]. Int J Mol Sci, 2019, 20(19): 4931.
7 Chardin D, Paquet M, Schiappa R, et al. Baseline metabolic tumor volume as a strong predictive and prognostic biomarker in patients with non-small cell lung cancer treated with PD1 inhibitors: a prospective study[J]. J Immunother Cancer, 2020, 8(2): e000645.
8 Hao D, Liu J, Chen M, et al. Immunogenomic analyses of advanced serous ovarian cancer reveal immune score is a strong prognostic factor and an indicator of chemosensitivity[J]. Clin Cancer Res, 2018, 24(15): 3560-3571.
9 Riaz N, Havel JJ, Makarov V, et al. Tumor and microenvironment evolution during immunotherapy with nivolumab[J]. Cell, 2017, 171(4): 934-949.
10 Wei F, Zhong S, Ma Z, et al. Strength of PD-1 signaling differentially affects T-cell effector functions[J]. Proc Natl Acad Sci U S A, 2013, 110(27): E2480-E2489.
11 Wang Q, Li P, Wu W. A systematic analysis of immune genes and overall survival in cancer patients[J]. BMC Cancer, 2019, 19(1): 1225.
12 Burger JA, Wiestner A. Targeting B cell receptor signalling in cancer:preclinical and clinical advances[J]. Nat Rev Cancer, 2018, 18(3): 148-167.
13 Mitchell S, Vargas J, Hoffmann A. Signaling via the NFkappaB system[J]. Wiley Interdiscip Rev Syst Biol Med, 2016, 8(3): 227-241.
14 Scott O, Roifman CM. NF-kappaB pathway and the Goldilocks principle:Lessons from human disorders of immunity and inflammation[J]. J Allergy Clin Immunol, 2019, 143(5): 1688-1701.
15 DiDonato JA, Mercurio F, Karin M. NF-kappaB and the link between inflammation and cancer[J]. Immunol Rev, 2012, 246(1): 379-400.
16 Ji Z, He L, Regev A, et al. Inflammatory regulatory network mediated by the joint action of NF-kB, STAT3, and AP-1 factors is involved in many human cancers[J]. Proc Natl Acad Sci U S A, 2019, 116(19): 9453-9462.
17 Pencik J, Pham HT, Schmoellerl J, et al. JAK-STAT signaling in cancer: From cytokines to non-coding genome[J]. Cytokine, 2016, 87: 26-36.
18 Owen KL, Brockwell NK, Parker BS. JAK-STAT signaling: A double-edged sword of immune regulation and cancer progression[J]. Cancers(Basel), 2019, 11(12): 2002.
19 Anthoney N, Foldi I, Hidalgo A. Toll and Toll-like receptor signalling in development[J]. Development, 2018, 145(9): dev156018.
20 Shcheblyakov DV, Logunov DY, Tukhvatulin AI, et al. Toll-like receptors(TLRs): The role in tumor progression[J]. Acta Naturae, 2010, 2(3): 21-29.
21 Ohadian MS, Nowroozi MR. Toll-like receptors: The role in bladder cancer development, progression and immunotherapy[J]. Scand J Immunol, 2019, 90(6): e12818.
22 Moreno-Manuel A, Jantus-Lewintre E, Simoes I, et al. CD5 and CD6 as immunoregulatory biomarkers in non-small cell lung cancer[J]. Transl Lung Cancer Res, 2020, 9(4): 1074-1083.
23 Pop LM, Barman S, Shao C, et al. A reevaluation of CD22 expression in human lung cancer[J]. Cancer Res, 2014, 74(1): 263-271.
24 Tuscano JM, Kato J, Pearson D, et al. CD22 antigen is broadly expressed on lung cancer cells and is a target for antibody-based therapy[J]. Cancer Res, 2012, 72(21): 5556-5565.
25 Holers VM, Kulik L. Complement receptor 2, natural antibodies and innate immunity: Inter-relationships in B cell selection and activation[J]. Mol Immunol, 2007, 44(1-3): 64-72.
26 Hannan JP. The structure-function relationships of complement receptor Type 2(CR2; CD21)[J]. Curr Protein Pept Sci, 2016, 17(5): 463-487.
27 Buchbinder EI, Desai A. CTLA-4 and PD-1 Pathways: Similarities, differences, and implications of their inhibition[J]. Am J Clin Oncol, 2016, 39(1): 98-106.
28 Kagamu H, Kitano S, Yamaguchi O, et al. CD4(+)T-cell immunity in the peripheral blood correlates with response to anti-PD-1 therapy[J]. Cancer Immunol Res, 2020, 8(3): 334-344.
29 Zhang XH, Wang HM, Jin L, et al. Effect of interleukin-7 on the anti-tumor function of CD8(+)T cells in patients with non-small cell lung cancer][J]. Zhonghua Yi Xue Za Zhi, 2018, 98(30): 2429-2433.
30 Liu ZH, Wang MH, Ren HJ, et al. Interleukin 7 signaling prevents apoptosis by regulating bcl-2 and bax via the p53 pathway in human non-small cell lung cancer cells[J]. Int J Clin Exp Pathol, 2014, 7(3): 870-881.
31 Ming J, Zhang QF, Jiang YD, et al. Interleukin 7 and its receptor promote cell proliferation and induce lymphangiogenesis in non-small cell lung cancer [J]. Zhonghua Bing Li Xue Za Zhi, 2012, 41(8): 511-518.
32 Binder C, Cvetkovski F, Sellberg F, et al. CD2 Immunobiology[J]. Front Immunol, 2020,11: 1090.
33 McNerney ME, Kumar V. The CD2 family of natural killer cell receptors[J]. Curr Top Microbiol Immunol, 2006, 298: 91-120.
34 Ivetic A, Hoskins GH, Hart SJ. L-selectin: A Major Regulator of Leukocyte Adhesion, Migration and Signaling[J]. Front Immunol, 2019, 10: 1068.
35 Watson HA, Durairaj R, Ohme J, et al. L-Selectin enhanced T cells improve the efficacy of cancer immunotherapy[J]. Front Immunol, 2019, 10: 1321.
36 Kuhn NF, Purdon TJ, van Leeuwen DG, et al. CD40 Ligand-modified chimeric antigen receptor T cells enhance antitumor function by eliciting an endogenous antitumor response[J]. Cancer Cell, 2019, 35(3): 473-488.
37 Seijkens T, Engel D, Tjwa M, et al. The role of CD154 in haematopoietic development[J]. Thromb Haemost, 2010, 104(4): 693-701.
38 Hassan GS, Stagg J, Mourad W. Role of CD154 in cancer pathogenesis and immunotherapy[J]. Cancer Treat Rev, 2015, 41(5): 431-440.