|本期目录/Table of Contents|

[1]李华娟,唐英俊,王赛妮,等.肺结节临床与CT影像学特征分析及良恶性预测模型构建[J].中华肺部疾病杂志,2023,(03):318-323.[doi:10.3877/cma.j.issn.1674-6902.2023.03.004 ]
 Li Huajuan,Tang Yingjun,Wang Saini,et al.Analysis of clinical and CT features of the patients with pulmonary nodules and establishment of prediction model to evaluate the probability of malignancy in pulmonary nodules[J].,2023,(03):318-323.[doi:10.3877/cma.j.issn.1674-6902.2023.03.004 ]
点击复制

肺结节临床与CT影像学特征分析及良恶性预测模型构建(PDF)

《中华肺部疾病杂志》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年03期
页码:
318-323
栏目:
论著
出版日期:
2023-06-20

文章信息/Info

Title:
Analysis of clinical and CT features of the patients with pulmonary nodules and establishment of prediction model to evaluate the probability of malignancy in pulmonary nodules
作者:
李华娟唐英俊王赛妮徐 旺林 玲李 羲黄华萍
570102 海口,海南医学院第一附属医院呼吸内科,海南医学院呼吸病研究所
Author(s):
Li Huajuan Tang Yingjun Wang Saini Xu Wang Lin Ling Li Xi Huang Huaping.
Department of Respiratory disease, the First affiliated Hospital of Hainan Medical University, Respiratory Disease Institute of Hainan Medical University, Haikou 570102, China
关键词:
肺结节 临床特征 影像学特征 Logistic回归分析 预测模型
Keywords:
Pulmonary nodules Clinical features Imaging features Logistic regression analysis Predictive model
分类号:
R563
DOI:
10.3877/cma.j.issn.1674-6902.2023.03.004
摘要:
目的 分析肺结节临床与CT影像学特征,筛选出模型候选指标,构建肺结节良恶性预测模型,用于临床肺结节的筛查。方法 选择2014年1月至2021年12月海口市3家三甲医院收治的肺结节患者2 484例,根据术后病理结果分为恶性组710例、良性组1 774例,通过单因素和多因素Logistic回归分析患者的临床和CT影像学特征,筛选出模型候选指标,采用随机分组将2 484例患者按7︰3比例分为训练集1 739例和测试集745例,构建肺结节良恶性预测模型。结果 年龄、分叶征、毛刺征、胸膜牵拉征、血管集束征、晕征、空气支气管征、支气管截断征、结节周围支扩征、结节周围炎症、卫星灶、钙化、厚壁空洞、薄壁空洞两组差异有统计学意义(P<0.001)。构建回归方程P=exp(X)/[1+exp(X)],X=-2.90+(0.06×年龄)+(1.95×分叶征)+(1.08×毛刺征)+(1.48×胸膜牵拉征)+(2.40×血管集束征)+(1.19×厚壁空洞)+(-1.64×薄壁空洞)+(1.14×空气支气管征)+(1.35×支气管截断征)+(-3.18×结节周围炎症)+(-0.99×卫星灶)+(1.78×晕征)+(-2.99×结节周围支扩征)+(-2.60×结节内钙化)。该模型绘制ROC曲线,AUC为0.968,95%CI:0.955~0.981,当截点值T=1.528时,敏感度为96%,特异性为81%,阳性预测值为93%,阴性预测值为88%,准确率为 92%。结论 年龄、分叶征、毛刺征、胸膜牵拉征、血管集束征、空气支气管征、支气管截断征、厚壁空洞和晕征是肺结节恶性的危险因素,结节周围支扩征、结节周围炎症、卫星灶、薄壁空洞、钙化是肺结节恶性的保护因素,构建的预测模型具有较高的灵敏度和特异度,可用于临床肺结节良恶性的筛查。
Abstract:
Objective The clinical and CT imaging characteristics of pulmonary nodules were analyzed, the model candidates were selected, and the prediction model of benign and malignant pulmonary nodules was constructed for the clinical screening of benign and malignant pulmonary nodules. Methods Retrospective analysis of 2,484 patients with pulmonary nodules admitted to the First Affiliated Hospital of Hainan Medical College, Hainan Provincial People's Hospital and Haikou Municipal People's Hospital from January 2014 to December 2021, According to the postoperative pathological results, it was divided into malignant group 710 case and benign group 1 774 case, The clinical and CT imaging characteristics of the patients were analyzed by univariate and multivariate Logistic regression, Screout model candidate indicators, By randomization, 2,484 patients were divided into training set 1 739 case in a 7︰3 ratio and test set 745 case, Construct the benign and malignant prediction model of pulmonary nodules. Results Age, leaf segmentation, burr, pleural pull, vascular collection, halo, air, bronchial sign, bronchial resection, perinodulular branch expansion, perinodule inflammation, satellite focus, calcification, thick-walled cavity, and thin-walled cavity(P<0.001). Build the regression equation P=exp(X)/[1+ exp(X)], X=-2.90+(0.06 age)+(1.95 leaf sign)+(1.08 burr)+(1.48 pleural pull)+(2.40 vascular bundle sign)+(1.19 thick wall hole)+(-1.64 cavity)+(1.14 air bronchial sign)+(1.35 bronchial cutoff)+(-3.18 surrounding nodule inflammation)+(-0.99 satellite focus)+(1.78 halo)+(-2.99 peripheral branch expansion)+(-2.60 internal nodular calcification). The model plots the ROC curve, AUC of 0.968,95%CI of 0.955 to 0.981, when the cut-off value T=1.528, the sensitivity was 96%, specificity of 81%, positive predictive value of 93%, negative predictive value of 88% and accuracy of 92%. Conclusion Age, leaf sign, burr, pleural pull, vascular collection, air bronchial sign, bronchial cut, thick wall cavity and halo signs are malignant risk factors of lung nodules, nodules, inflammation, satellite focus, thin wall cavity, calcification is lung nodules malignant protective factors, the prediction model has high sensitivity and specificity, can be used for clinical screening of benign and malignant pulmonary nodules.

参考文献/References:

1 杨 丽, 钱桂生. 肺结节临床精准诊断的新理念[J/CD]. 中华肺部疾病杂志(电子版), 2022, 15(1): 1-5.
2 黎惠如, 方伟军, 刘曾维, 等. CT在单发结节或肿块型肺结核和肺癌鉴别中的作用研究[J/CD]. 新发传染病电子杂志, 2021, 6(4): 323-326.
3 Bach PB, Mirkin JN, Oliver TK, et al. Benefits and harms of CT screening for lung cancer: a systematic review[J]. JAMA, 2012, 307(22): 2418-2429.
4 Mcwilliams A, Tammemagi MC, Mayo JR, et al. Probability of cancer in pulmonary nodules detected on first screening CT[J]. N Eng J Med, 2013, 369(21): 2060.
5 Dong J, Sun NL. Development and validation of ciinical diagnostic models for the probability of malignancy in solitary pulmonary nodules[J]. Thoracic Cancer, 2014, 5(2): 162.
6 刘宗超, 李哲轩, 张 阳, 等. 2020全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志, 2021, 7(2): 1-14.
7 刘 姝, 环 静, 佘远霞. 肺磨玻璃结节病理学分级与高分辨率CT征象的相关性分析[J]. 实用临床医药杂志, 2019, 23(7): 56-59.
8 National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology-lung cancer screening version 1.2021. Plymouth Meeting(PA): the National Comprehensive Cancer Network; ?[cited2021 May 5].
9 Chen W, Zheng RB, Zhang S, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132.
10 Chan EY, Gaur P, Ge YM, et al. Management of the Solitary Pulmonary Nodule[J]. Arch Pathol Lab Med, 2017, 141(7): 927-931.
11 田素升, 张 炜, 范海涛, 等. 多样化CT征象鉴别周围性肺癌与肺结核[J]. 分子影像学杂志, 2018, 41(1): 11-15.
12 望 云, 刘士远, 范 丽, 等. 含薄壁囊腔周围型肺癌的CT特征及病理基础分析[J]. 中华放射学杂志, 2017, 51(2): 96-101.
13 孙玉林. 浅述周围型肺癌、结核球CT研究现状[J]. 中国医疗器械信息, 2018, 24(5): 57-58.
14 王 莉, 姜敏杰, 杨玉龙, 等. 孤立性肺空洞疾病影像学特征及临床诊断价值分析[J]. 中国实验诊断学, 2020, 24(11): 1784-1787.
15 Lee YR, Choi YW, Lee KJ, et al. CT halo sign: the spectrum of pulmonary diseases[J]. Br J Radiol, 2005,(78): 862-865.
16 王 鹏. 肺癌、肺结核球和炎性假瘤螺旋CT的影像特征[J]. 临床医药文献电子杂志, 2017, 4(59): 47-49.
17 仲崇浩, 史宏灿, 束余声, 等. 孤立性肺结节恶性判断数学预测模型的建立及临床对比验证分析[J]. 实用临床医药杂志, 2017, 21(9): 82-85,93.
18 肖湘生, 吴华伟, 李惠民, 等. 周围型肺癌胸膜凹陷的CT和MRI表现与病理对照[J]. 临床放射性杂志, 2002, 21(5): 344-347.
19 周 菲, 孙彦华. 肺结核球误诊为周围性肺癌23例CT影像分析[J]. 中国误诊学杂志, 2010, 10(33): 8207.
20 万传毅, 曹 林, 阮丽婷. 球形肺炎、肺结核球与周围型肺癌的CT诊断及鉴别[J]. 河南医学研究, 2021, 30(27): 5137-5140.
21 马 东, 姜加学, 杨小庆, 等. 肺部磨玻璃结节的CT影像特征评估肺腺癌浸润性的价值[J]. 临床肺科杂志, 2019, 24(8): 1470-1473.
22 王丽丽. 分析肺磨玻璃结节的胸部CT影像特征及其对结节良恶性的诊断意义[J]. 影像研究与医学应用, 2021, 5(16): 165-166.
23 Ebert W, Muley T. CYFRA 2 1-1 in the follow-up of inoperable non-small cell lung cancer patients treated with chemotherapy[J]. Anticancer Res, 1999, 19: 2669-2672.
24 Zhang Y, Qiang JW, Shen Y, et al. Using air bronchograms on multi-detector CT to predict the invasiveness of small lung adenocarcinoma[J]. Eur J R adiol, 2016, 85(3): 571-577.
25 黄定品, 傅钢泽, 项益岚, 等. 纯磨玻璃肺小腺癌内异常空气支气管征与病理亚型的相关性[J]. 医学影像学杂志, 2019, 29(12): 2047-2050.
26 李孝东, 廖 潜, 游玉峰. 多层螺旋CT在肺结核空洞与肺癌空洞鉴别诊断中的临床应用[J]. 中国肿瘤临床与康复, 2021, 28(7): 850-853.
27 骆科进, 关 晶, 先正元. 结节周围支扩征在CT诊断肺结核球中的价值[J]. 中国医学影像技术, 2001, 17(4): 337-338.
28 王爱英, 李兰涛, 张伟红. 肺结核球的HRCT诊断[J]. 青岛医药卫生, 2012, 44(6): 412-414.
29 Helen T, Winer-Mnram MD. The solitary pulmonary nodule[J]. Radiology, 2007, 239(1): 34-49.
30 唐春耕, 尹 喜, 王成伟. 能谱CT在不典型结核球与肺癌中的诊断价值[J]. 实用放射学杂志, 2017, 33(4): 522-525.
31 张益军. 肺结核球的CT影像学特点分析[J]. 中国冶金工业医学杂志, 2015, 32(4): 446-447, 461.
32 魏连贵, 关春爽, 陈步东, 等. 孤立性非干酪性肺结核球的CT表现与鉴别诊断[J/CD]. 新发传染病电子杂志, 2021, 6(1): 35-39.

备注/Memo

备注/Memo:
基金项目: 海南省卫生健康行业科研项目(20A200129)
海南省临床医学中心建设项目资助
通信作者: 黄华萍, Email: huapinghuang153@163.com
更新日期/Last Update: 2023-06-20