1 任成山, 卞士柱, 胡明冬. 肺动脉高压的成因及治疗新理念[J/CD]. 中华肺部疾病杂志(电子版), 2023, 16(1): 1-5.
2 Simonneau G, Montani D, Celermajer DS, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension[J]. Eur Respir J, 2019, 53(1): 1801913.
3 中华医学会呼吸病学分会肺栓塞与肺血管病学组, 中国医师协会呼吸医师分会肺栓塞与肺血管病工作委员会, 全国肺栓塞与肺血管病防治协作组, 等. 中国肺动脉高压诊断与治疗指南(2021版)[J]. 中华医学杂志 2021, 101(1): 11-51.
4 Malenfant S, Neyron AS, Paulin R, et al. Signal transduction in the development of pulmonary arterial hypertension[J]. Pulm Circ, 2013, 3(2): 278-293.
5 Thenappan T, Khoruts A, Chen Y, et al. Can intestinal microbiota and circulating microbial products contribute to pulmonary arterial hypertension[J]? Am J Physiol Heart Circ Physiol, 2019, 317(5): H1093-h1101.
6 Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome[J]. Nat Rev Microbiol, 2011, 9(4): 279-290.
7 Marchesi JR, Adams DH, Fava F, et al. The gut microbiota and host health: a new clinical frontier[J]. Gut, 2016, 65(2): 330-339.
8 Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body[J]. PLoS Biol, 2016, 14(8): e1002533.
9 Cerdó T, Ruiz A, Acuña I, et al. Gut microbial functional maturation and succession during human early life[J]. Environ Microbiol, 2018, 20(6): 2160-2177.
10 Tamburini S, Shen N, Wu HC, et al. The microbiome in early life: implications for health outcomes[J]. Nat Med, 2016, 22(7): 713-722.
11 Wu P, Zhu T, Tan Z, et al. Role of gut microbiota in pulmonary arterial hypertension[J]. Front Cell Infect Microbiol, 2022, 12: 812303.
12 Hayabuchi Y. The action of smooth muscle cell potassium channels in the pathology of pulmonary arterial hypertension[J]. Pediatr Cardiol, 2017, 38(1): 1-14.
13 Humbert M, Morrell NW, Archer SL, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension[J]. J Am Coll Cardiol, 2004, 43(12 Suppl S): 13s-24s.
14 Humbert M, Guignabert C, Bonnet S, et al. Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives[J]. Eur Respir J, 2019, 53(1): 1801887.
15 Stacher E, Graham BB, Hunt JM, et al. Modern age pathology of pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2012, 186(3): 261-272.
16 Rich S, Dantzker DR, Ayres SM, et al. Primary pulmonary hypertension. A national prospective study[J]. Ann Intern Med,1987, 107(2): 216-223.
17 Kim S, Rigatto K, Gazzana MB, et al. Altered gut microbiome profile in patients with pulmonary arterial hypertension[J]. Hypertension, 2020, 75(4): 1063-1071.
18 Huang Y, Lin F, Tang R, et al. Gut microbial metabolite trimethylamine N-oxide aggravates pulmonary hypertension[J]. Am J Respir Cell Mol Biol, 2022, 66(4): 452-460.
19 Luo L, Chen Q, Yang L, et al. MSCs Therapy Reverse the Gut Microbiota in Hypoxia-Induced Pulmonary Hypertension Mice[J]. Front Physiol, 2021, 12: 712139.
20 Callejo M, Mondejar-Parreño G, Barreira B, et al. Pulmonary arterial hypertension affects the rat gut microbiome[J]. Sci Rep, 2018, 8(1): 9681.
21 Sanada TJ, Hosomi K, Shoji H, et al. Gut microbiota modification suppresses the development of pulmonary arterial hypertension in an SU5416/hypoxia rat model[J]. Pulm Circ, 2020, 10(3): 2045894020929147.
22 Tamosiuniene R, Tian W, Dhillon G, et al. Regulatory T cells limit vascular endothelial injury and prevent pulmonary hypertension[J]. Circ Res, 2011, 109(8): 867-879.
23 Manfredo Vieira S, Hiltensperger M, Kumar V, et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans[J]. Science, 2018, 359(6380): 1156-1161.
24 Sharma RK, Oliveira AC, Yang T, et al. Gut pathology and its rescue by ACE2(Angiotensin-Converting Enzyme 2)in hypoxia-induced pulmonary hypertension[J]. Hypertension, 2020, 76(5): 206-216.
25 Ranchoux B, Bigorgne A, Hautefort A, et al. Gut-lung connection in pulmonary arterial hypertension[J]. Am J Respir Cell Mol Biol, 2017, 56(3): 402-405.
26 Perros F, Lambrecht BN, Hammad H. TLR4 signalling in pulmonary stromal cells is critical for inflammation and immunity in the airways[J]. Respir Res, 2011, 12(1): 125.
27 Bansal T, Alaniz RC, Wood TK, et al. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation[J]. Proc Natl Acad Sci U S A, 2010, 107(1): 228-233.
28 Zhan K, Gong X, Chen Y, et al. Short-chain fatty acids regulate the immune responses via G protein-coupled receptor 41 in bovine rumen epithelial cells[J]. Front Immunol, 2019, 10: 2042.
29 Soon E, Crosby A, Southwood M, et al. Bone morphogenetic protein receptor type Ⅱ deficiency and increased inflammatory cytokine production. A gateway to pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2015, 192(7): 859-872.
30 Beam A, Clinger E, Hao L. Effect of diet and dietary components on the composition of the gut microbiota[J]. Nutrients, 2021, 13(8): 2795.
31 Singh RK, Chang HW, Yan D, et al. Influence of diet on the gut microbiome and implications for human health[J]. J Transl Med, 2017, 15(1): 73.
32 Albenberg LG, Wu GD. Diet and the intestinal microbiome: associations, functions, and implications for health and disease[J]. Gastroenterology, 2014, 146(6): 1564-1572.
33 Abenavoli L, Scarpellini E, Colica C, et al. Gut microbiota and obesity: A role for probiotics[J]. Nutrients, 2019, 11(11): 2690.
34 Tang WH, Hazen SL. The contributory role of gut microbiota in cardiovascular disease[J]. J Clin Invest, 2014, 124(10): 4204-4211.
35 Mu C, Zhu W. Antibiotic effects on gut microbiota, metabolism, and beyond[J]. Appl Microbiol Biotechnol, 2019, 103(23-24): 9277-9285.
36 Sharma RK, Oliveira AC, Yang T, et al. Pulmonary arterial hypertension-associated changes in gut pathology and microbiota[J]. ERJ Open Res, 2020, 6(3): 00253-2019.