|本期目录/Table of Contents|

[1]黄 杰,夏 瑜,姜艳娇,等.GPR146经P-JNK通路对肺动脉高压小鼠血管重塑的影响[J].中华肺部疾病杂志,2023,(04):460-465.[doi:10.3877/cma.j.issn.1674-6902.2023.04.002 ]
 Huang Jie,Xia Yu,Jiang Yanjiao,et al.Effects of GPR146 on vascular remodeling in mice with pulmonary hypertension via P-JNK pathway[J].,2023,(04):460-465.[doi:10.3877/cma.j.issn.1674-6902.2023.04.002 ]
点击复制

GPR146经P-JNK通路对肺动脉高压小鼠血管重塑的影响(PDF)

《中华肺部疾病杂志》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年04期
页码:
460-465
栏目:
论著
出版日期:
2023-08-20

文章信息/Info

Title:
Effects of GPR146 on vascular remodeling in mice with pulmonary hypertension via P-JNK pathway
作者:
黄 杰1夏 瑜2姜艳娇2刘 云1
222061 连云港,徐州医科大学附属连云港医院药学部1、呼吸内科2
Author(s):
Huang Jie1 Xia Yu2 Jiang Yanjiao2 Liu Yun1.
1Department of Pharmacy; 2Respiratory Medicine, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222061, China
关键词:
G蛋白偶联受体146 血管重塑 肺动脉平滑肌细胞 磷酸化氨基末端蛋白激酶
Keywords:
Orphan G protein-coupled receptor 146 Vascular remodeling Pulmonary artery smooth muscle cells Phosphorylated c-Jun N-terminal kinase
分类号:
R543.2
DOI:
10.3877/cma.j.issn.1674-6902.2023.04.002
摘要:
目的 分析G蛋白偶联受体146(orphan G protein-coupled receptor 146, GPR146)经磷酸化氨基末端蛋白激酶(phosphorylated c-Jun N-terminal kinase, P-JNK)通路对肺动脉高压(pulmonary hypertension, PH)肺血管重构(pulmonary vascular remodeling, PVR)致肺血管压力升高的影响。方法 构建PH模型,采用SD大鼠10只,分为对照组和SuHx组,每组5只; 采用小鼠20只,分为Control组、SuHx组、SuHx+SiNC组、SuHx+SiGPR146组,共4组。测量每组右心室收缩压(right ventricular systolic pressure, RVSP)和右心室肥厚指数(right ventricular hypertrophy index, RVHI)。免疫荧光(immunofluorescence, IFC)染色观察GPR146表达,免疫印迹检测GPR146、P-JNK与增殖细胞抗原(proliferating cell nuclear antigen, PCNA)表达。结果 与Control组相比,SuHx组大鼠肺组织GPR146升高(P<0.05,t=4.742)。GPR146主要在α-actin染色血管中膜层平滑肌细胞表达; SuHx组小鼠肺组织GPR146升高,SuHx+SiGPR146组GPR146比SuHx+SiNC组低(P<0.05,F=8.576)。SuHx组小鼠肺组织P-JNK与PCNA升高,干扰GPR146后P-JNK与PCNA表达降低(P<0.05,F=6.048,25.55); SuHx组小鼠RVSP和RVHI高于Control组,干扰GPR146后SuHx+SiGPR146组小鼠RVSP和RVHI低于SuHx+SiNC组; SuHx组小鼠肺血管壁厚度比Control组厚; 敲除GPR146后,SuHx+siGPR146组小鼠肺血管壁厚度小于SuHx+siNC组(P<0.05,F=4.106); HYP+SiGPR146组PASMCs中GPR146下调(P<0.05,F=6.907),与SiNC组相比,HYP+SiNC组PASMCs中P-JNK与PCNA表达上调,敲除GPR146后HYP+SiGPR146组中P-JNK与PCNA蛋白相较于HYP+SiNC组下调(P<0.05,F=7.436,33.68)。结论 GPR146经P-JNK通路促进肺动脉平滑肌细胞(PASMCs)增殖,加剧PH进展,可为预防和治疗PH可行靶点。
Abstract:
Objective To investigate the effect of G protein-coupled receptor 146(GPR146)on pulmonary vascular pressure elevation induced by pulmonary vascular remodeling(PVR)in pulmonary hypertension(PH)via phosphorylated c-Jun N-terminal kinase(P-JNK)pathway. Methods Ten SD rats were used to establish PH models and were divided into control group and SuHx group, with 5 rats in each group. Twenty mice were divided into Control group, SuHx group, SuHx+SiNC group and SuHx+SiGPR146 group. Right ventricular systolic pressure(RVSP)and right ventricular hypertrophy index(RVHI)were measured. The expression of GPR146 was detected by immunofluorescence(IFC)staining, and the expressions of GPR146, P-JNK and proliferating cell nuclear antigen(PCNA)were detected by Western Blot. Results Compared with Control group, GPR146 in lung tissue of SuHx group was increased(P<0.05, t=4.742). GPR146 was mainly expressed in α-actin stained vascular mesenchyme smooth muscle cells. GPR146 in SuHx group was increased, and GPR146 in SuHx+SiGPR146 group was lower than SuHx+SiNC group(P<0.05, F=8.576). The expression of P-JNK and PCNA in lung tissue of SuHx group was increased, and the expression of P-JNK and PCNA was decreased after interference with GPR146(P<0.05, F=6.048,25.55); The RVSP and RVHI of SuHx group were higher than those of Control group, and the RVSP and RVHI of SuHx+SiGPR146 group were lower than those of SuHx+SiNC group after interference with GPR146. The pulmonary vascular wall thickness in SuHx group was thicker than that in Control group. After GPR146 was knocked out, the pulmonary vascular wall thickness in SuHx+siGPR146 group was lower than that in SuHx+siNC group(P<0.05, F=4.106); GPR146 in PASMCs of HYP+SiGPR146 group was down-regulated(P<0.05, F=6.907). Compared with SiNC group, P-JNK and PCNA expressions in PASMCs of HYP+SiNC group were up-regulated. After GPR146 knockout, P-JNK and PCNA proteins in HYP+SiGPR146 group were down-regulated compared with those in HYP+SiNC group(P<0.05, F=7.436,33.68). Conclusion GPR146 promotes the proliferation of pulmonary artery smooth muscle cells(PASMCs)through the P-JNK pathway and aggravates the progression of PH, which can be a feasible target for the prevention and treatment of PH.

参考文献/References:

1 任成山, 卞士柱, 胡明冬. 肺动脉高压的成因及治疗新理念[J/CD]. 中华肺部疾病杂志(电子版), 2023, 16(1): 1-5.
2 Simonneau G, Montani D, Celermajer DS, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension[J]. Eur Respir J, 2019, 53(1): 10.1183/13993003.01913-2018
3 Liang S, Desai AA, Black SM, et al. Cytokines, chemokines, and inflammation in pulmonary arterial hypertension[J]. Adv Exp Med Biol, 2021, 1303: 275-303.
4 Cassady SJ, Ramani GV. Right heart failure in pulmonary hypertension[J]. Cardiol Clin, 2020, 38(2): 243-255.
5 Luna-Lopez R, Ruiz Martin A, Escribano Subias P. Pulmonary arterial hypertension[J]. Med Clin(Barc), 2022, 158(12): 622-629.
6 Alhosaini K, Azhar A, Alonazi A, et al. GPCRs: The most promiscuous druggable receptor of the mankind[J]. Saudi Pharm J, 2021, 29(6): 539-551.
7 Nieto Gutierrez A, Mcdonald PH. GPCRs: Emerging anti-cancer drug targets[J]. Cell Signal, 2018, 41: 65-74.
8 Yu H, Rimbert A, Palmer AE, et al. GPR146 deficiency protects against hypercholesterolemia and atherosclerosis[J]. Cell, 2019, 179(6): 1276-1288.
9 Jiang H, Niu Y, He Y, et al. Proteomic analysis reveals that Xbp1s promotes hypoxic pulmonary hypertension through the p-JNK MAPK pathway[J]. J Cell Physiol, 2022, 237(3): 1948-1963.
10 Meephat S, Prasatthong P, Potue P, et al. Diosmetin ameliorates vascular dysfunction and remodeling by modulation of Nrf2/HO-1 and p-JNK/p-NF-kappaB expression in hypertensive rats[J]. Antioxidants(Basel), 2021, 10(9): 10.3390/antiox10091487
11 Penumatsa KC, Toksoz D, Warburton RR, et al. Transglutaminase 2 in pulmonary and cardiac tissue remodeling in experimental pulmonary hypertension[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 313(5): L752-L762.
12 Jiang Y, Huang J, Xia Y, et al. Hypoxia activates GPR146 which participates in pulmonary vascular remodeling by promoting pyroptosis of pulmonary artery endothelial cells[J]. Eur J Pharmacol, 2023, 941: 175502.
13 Nayak K, Razak A, Megha A, et al. Impact of right ventricular function on left ventricular torsion and ventricular deformations in pulmonary artery hypertension patients[J]. Cardiovasc Hematol Disord Drug Targets, 2021, 21(1): 78-86.
14 Pan J, Lei L, Zhao C, et al. Clinical characteristics and survival of patients with three major connective tissue diseases associated with pulmonary hypertension: A study from China[J]. Exp Ther Med, 2021, 22(3): 925.
15 Tello K, Seeger W, Naeije R, et al. Right heart failure in pulmonary hypertension: Diagnosis and new perspectives on vascular and direct right ventricular treatment[J]. Br J Pharmacol, 2021, 178(1): 90-107.
16 Weiss A, Boehm M, Egemnazarov B, et al. Kinases as potential targets for treatment of pulmonary hypertension and right ventricular dysfunction[J]. Br J Pharmacol, 2021, 178(1): 31-53.
17 Hu Y, Chi L, Kuebler WM, et al. Perivascular inflammation in pulmonary arterial hypertension[J]. Cells, 2020, 9(11): 10.3390/cells9112338
18 Chen B, Calvert AE, Cui H, et al. Hypoxia promotes human pulmonary artery smooth muscle cell proliferation through induction of arginase[J]. Am J Physiol Lung Cell Mol Physiol, 2009, 297(6): L1151-1519.
19 Lyle MA, Davis JP, Brozovich FV. Regulation of pulmonary vascular smooth muscle contractility in pulmonary arterial hypertension: Implications for therapy[J]. Front Physiol, 2017, 8: 614.
20 Sheikh AQ, Lighthouse JK, Greif DM. Recapitulation of developing artery muscularization in pulmonary hypertension[J]. Cell Rep, 2014, 6(5): 809-817.
21 Gorr MW, Sriram K, Muthusamy A, et al. Transcriptomic analysis of pulmonary artery smooth muscle cells identifies new potential therapeutic targets for idiopathic pulmonary arterial hypertension[J]. Br J Pharmacol, 2020, 177(15): 3505-3518.
22 Lindfors L, Sundstrom L, Froderberg Roth L, et al. Is GPR146 really the receptor for proinsulin C-peptide?[J]. Bioorg Med Chem Lett, 2020, 30(13): 127208.
23 Wilkins BP, Finch AM, Wang Y, et al. Orphan GPR146: an alternative therapeutic pathway to achieve cholesterol homeostasis?[J]. Trends Endocrinol Metab, 2022, 33(7): 481-492.
24 Satoh R, Hagihara K, Sugiura R. Rae1-mediated nuclear export of Rnc1 is an important determinant in controlling MAPK signaling[J]. Curr Genet, 2018, 64(1): 103-108.
25 Li G, Qi W, Li X, et al. Recent advances in c-Jun N-terminal kinase(JNK)inhibitors[J]. Curr Med Chem, 2021, 28(3): 607-627.
26 Pua LJW, Mai CW, Chung FF, et al. Functional roles of JNK and p38 MAPK signaling in nasopharyngeal carcinoma[J]. Int J Mol Sci, 2022, 23(3): 10.3390/ijms23031108
27 Duan X, Li J, Cui J, et al. Chemical component and in vitro protective effects of Matricaria chamomilla(L.)against lipopolysaccharide insult[J]. J Ethnopharmacol, 2022, 296: 115471.
28 Miyagawa K, Shi M, Chen PI, et al. Smooth muscle contact drives endothelial regeneration by BMPR2-Notch1-Mediated metabolic and epigenetic changes[J]. Circ Res, 2019, 124(2): 211-224.

备注/Memo

备注/Memo:
收稿日期:2023-03-05)
基金项目: 国家自然科学基金资助项目(31871155)
通信作者: 刘 云, Email: yunliu211315@163.com

更新日期/Last Update: 2023-08-20