|本期目录/Table of Contents|

[1]罗 婷,张 实.5种生物标志物对ARDS预后的预测分析[J].中华肺部疾病杂志,2023,(04):471-475.[doi:10.3877/cma.j.issn.1674-6902.2023.04.004 ]
 Luo Ting,Zhang Shi..Prognostic analysis of 5 biomarkers for acute respiratory distress syndrome[J].,2023,(04):471-475.[doi:10.3877/cma.j.issn.1674-6902.2023.04.004 ]
点击复制

5种生物标志物对ARDS预后的预测分析(PDF)

《中华肺部疾病杂志》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年04期
页码:
471-475
栏目:
论著
出版日期:
2023-08-20

文章信息/Info

Title:
Prognostic analysis of 5 biomarkers for acute respiratory distress syndrome
作者:
罗 婷1张 实23
400038 重庆,陆军(第三)军医大学军事预防医学系军队健康教育教研室1;250013 济南,山东第一医科大学附属中心医院呼吸与危重症学科2;210009 南京,江苏省重症医学重点实验室,东南大学附属中大医院重症医学科3
Author(s):
Luo Ting1 Zhang Shi23.
1Department of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; 2Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China; 3Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
关键词:
急性呼吸窘迫综合征 严重程度 预后 干扰素诱导的解旋酶C域蛋白1 基因干扰素调节因子1
Keywords:
Acute respiratory distress syndrome Severity Prognosis Interferon-induced helicase C domain-containing protein 1 Gene interferon regulatory factor 1
分类号:
R563
DOI:
10.3877/cma.j.issn.1674-6902.2023.04.004
摘要:
目的 分析5种生物标志物干扰素诱导的解旋酶C域蛋白1(interferon-induced helicase C domain-containing protein 1, IFIH1)、基因干扰素调节因子1(gene interferon regulatory factor 1, IRF1)、信号传导及转录激活蛋白(signal transducer and activator of transcription, STAT1)、鸟苷结合蛋白1(guanylate binding protein 1, GBP1)、干扰素诱导蛋白与四肽重复序列3(interferon-induced protein with tetratricopeptide repeats 3, IFIT3)对急性呼吸窘迫综合征(acute respiratory distress syndrome, ARDS)预后的预测。方法 选择2017年1月至2017年12月东南大学附属中大医院重症医学科收治的26例ARDS患者为对象,采集患者外周血行芯片检测,提取5种生物标志物IFIH1、IRF1、STAT1、GBP1、IFIT3表达量。采用单因素Cox回归和受试者工作特征曲线(ROC)评估5种生物标志物和ARDS严重程度与28 d累积病死率相关性。采用多因素COX回归构建联合模型。结果 5种生物标志物表达与ARDS患者28 d累积病死率相关(P<0.05),ARDS严重程度和28 d累计病死率不相关(P>0.05):IFIH1[HR 2.309 95%CI(1.162, 4.590)]; IRF1[HR 3.152 95%CI(1.043, 9.528)]; IFIT3[HR 1.793 95%CI(1.103, 2.917)]; GBP1[HR 2.342 95%CI(1.087, 5.047)]; STAT1[HR 2.492 95%CI(1.388,4.474)]; ARDS严重程度[HR 1.665 95%CI(0.598, 4.628)]。5种生物标志物及ARDS严重程度预后预测ROC曲线下面积分别为0.883、0.833、0.900、0.925、0.908、0.625。联合模型对28 d预后预测性为0.950。结论 对ARDS患者预后的预测,5种生物标志物优于柏林标准ARDS严重程度。5种生物标志物构建的模型选出预后不佳的ARDS患者,具有临床意义。
Abstract:
Objective To analyze the prognostics value of 5 biomarkers IFIH1, IRF1, STAT1, GBP1 and IFIT3 in acute respiratory distress syndrome(ARDS). Methods All of 26 ARDS patients admitted to the Department of Critical Care Medicine, Zhongda Hospital Affiliated to Southeast University from January 2017 to December 2017 were included as the study objects. Peripheral blood was collected for microarray detection, and the expression levels of IFIH1, IRF1, STAT1, GBP1, IFIT3 were extracted. The relationship of 5 biomarkers and ARDS severity with 28-day cumulative mortality was examined using univariate Cox regression and receiver operating characteristic curve(ROC), with a cutoff value of P<0.05. In order to create a combined model of the five chemicals and the severity of ARDS, multivariate COX regression was utilized. Results In ARDS patients, expression of five molecules was linked with 28-day cumulative mortality(P<0.05)according to a univariate COX regression analysis, but not with ARDS severity(P>0.05): IFIH1[HR 2.309 95%CI(1.162, 4.590)]; IRF1[HR 3.152 95%CI(1.043, 9.528)]; IFIT3[HR 1.793 95%CI(1.103, 2.917)]; GBP1[HR 2.342 95%CI(1.087, 5.047)]; STAT1[HR 2.492 95%CI(1.388, 4.474)]; ARDS severity[HR 1.665 95%CI(0.598, 4.628)]. According to ROC analysis, the prediction accuracy(area under the ROC curve)of five molecules and the severity of ARDS to 28-day mortality were, respectively, 0.883, 0.833, 0.900, 0.925, 0.908, and 0.625. With an accuracy of 0.950, the combined model predicted the 28-day mortality. Conclusion Five molecules were more accurate at predicting the prognosis of ARDS patients than the Berlin criteria for ARDS severity. The integrated model based on five molecules can accurately categorize patients with severe ARDS who have a bad prognosis and aid in ARDS therapy.

参考文献/References:

1 Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome[J]. N Engl J Med, 2017, 377(19): 1904-1905.
2 顾晓凌, 宋 勇. 线粒体DNA在急性肺损伤发生、发展中的作用[J/CD]. 中华肺部疾病杂志(电子版), 2012, 5(4): 348-350.
3 马李杰, 李王平, 金发光. 急性肺损伤/急性呼吸窘迫综合征发病机制的研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2013, 6(1): 65-68.
4 Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries[J]. JAMA, 2016, 315(8): 788-800.
5 张梦薇, 李玉英. 间充质干细胞治疗急性呼吸窘迫综合征:希望和挑战[J/CD]. 中华肺部疾病杂志(电子版), 2022, 15(4): 589-592.
6 Fan E, Brodie D, Slutsky AS. Acute Respiratory Distress Syndrome:Advances in Diagnosis and Treatment[J]. JAMA, 2018, 319(7): 698-710.
7 Ruan SY, Lin HH, Huang CT, et al. Exploring the heterogeneity of effects of corticosteroids on acute respiratory distress syndrome: a systematic review and meta-analysis[J]. Crit Care, 2014, 18(2): R63.
8 Chen H, Wang S, Zhao Y, et al. Correlation analysis of omega-3 fatty acids and mortality of sepsis and sepsis-induced ARDS in adults: data from previous randomized controlled trials[J]. Nutr J, 2018, 17(1): 57.
9 Leng YX, Yang SG, Song YH, et al. Ulinastatin for acute lung injury and acute respiratory distress syndrome: A systematic review and meta-analysis[J]. World J Crit Care Med, 2014, 3(1): 34-41.
10 马娟娟, 陈雪玲, 王 蕾. ARDS患者救治中有创呼吸机辅助呼吸的临床干预及疗效分析[J/CD]. 中华肺部疾病杂志(电子版), 2022, 15(6): 876-878.
11 王 冉, 张 巧, 马千里, 等. 血清学生物标志物对急性呼吸窘迫综合征进展及预后的预测研究[J]. 第三军医大学学报, 2017, 39(19): 1926-1932.
12 Hendrickson CM, Matthay MA. Endothelial biomarkers in human sepsis: pathogenesis and prognosis for ARDS[J]. Pulm Circ, 2018, 8(2): 2045894018769876.
13 Zhang S, Chu C, Wu Z, et al. IFIH1 Contributes to M1 Macrophage Polarization in ARDS[J]. Front Immunol, 2021, 11: 580838.
14 Chu YB, Li J, Jia P, et al. Irf1-and Egr1-activated transcription plays a key role in macrophage polarization: A multiomics sequencing study with partial validation[J]. Int Immunopharmacol, 2021, 99: 108072.
15 Wang AL, Kang XL, Wang J, et al. Irf1-and Egr1-activated transcription plays a key role in macrophage polarization: A multiomics sequencing study with partial validation[J]. Int Immunopharmacol, 2023, 114: 109478.
16 Gattinoni L, Tonetti T, Quintel M. Regional physiology of ARDS[J]. Crit Care, 2017, 21(Suppl 3): 312.
17 Huang X, Xiu H, Zhang S, et al. The role of macrophages in the pathogenesis of ALI/ARDS[J]. Mediators Inflamm, 2018, 2018: 1264913.
18 Tasaka S, Ohshimo S, Takeuchi M, et al. ARDS Clinical Practice Guideline Committee 2021 from the Japanese Respiratory Society, the Japanese Society of Intensive Care Medicine, and the Japanese Society of Respiratory Care Medicine. ARDS clinical practice guideline 2021[J]. Respir Invest, 2022, 60(4): 446-495.
19 Cananzi M, Wohler E, Marzollo A, et al. IFIH1 loss-of-function variants contribute to very early-onset inflammatory bowel disease[J]. Hum Genet, 2021, 140(9): 1299-1312.
20 Aparici-Herraiz I, Sánchez-Sánchez G, Batlle C, et al. IRF1 is required for MDA5(IFIH1)induction by IFN-α, LPS, and poly(I︰C)in murine macrophages[J]. J Innate Immun, 2022: 1-20.
21 Molineros JE, Maiti AK, Sun C, et al. Admixture mapping in lupus identifies multiple functional variants within IFIH1 associated with apoptosis, inflammation, and autoantibody production[J]. Plos Genet, 2013, 9(2): e1003222.
22 Jaeger M, van der Lee R, Cheng SC, et al. The RIG-I-like helicase receptor MDA5(IFIH1)is involved in the host defense against Candida infections[J]. Eur J Clin Microbiol Infect Dis, 2015, 34(5): 963-974.
23 Stone A, Green R, Wilkins C, et al. RIG-I-like receptors direct inflammatory macrophage polarization against West Nile virus infection[J]. Nature Commun, 2019, 10(1): 3649-3665.
24 Feng H, Zhang YB, Gui JF, et al. Interferon regulatory factor 1(IRF1)and anti-pathogen innate immune responses[J]. PLoS Pathog, 2021, 17(1): e1009220.
25 Wang J, Li H, Xue B, et al. IRF1 Promotes the innate immune response to viral infection by enhancing the activation of IRF3[J]. J Virol, 2020, 94(22): e01231- e01220.
26 Zhu X, Guo Q, Zou J, et al. MiR-19a-3p suppresses M1 macrophage polarization by inhibiting STAT1/IRF1 pathway[J]. Front Pharmacol, 2021, 12: 614044.
27 Guo Q, Zhu X, Wei R, et al. miR-130b-3p regulates M1 macrophage polarization via targeting IRF1[J]. J Cell Physiol, 2021, 236(3): 2008-2022.
28 Butturini E, Carcereri de Prati A, Mariotto S. Redox regulation of STAT1 and STAT3 signaling[J]. Int J Mol Sci, 2020, 21(19): 7034.
29 Zuo Y, Feng Q, Jin L, et al. Regulation of the linear ubiquitination of STAT1 controls antiviral interferon signaling[J]. Nat Commun, 2020, 11(1): 1146.
30 Mizoguchi Y, Okada S. Inborn errors of STAT1 immunity[J]. Curr Opin Immunol, 2021, 72: 59-64.
31 Wang Z, Qin J, Zhao J, et al. Inflammatory IFIT3 renders chemotherapy resistance by regulating post-translational modification of VDAC2 in pancreatic cancer[J]. Theranostics, 2020, 10(16): 7178-7192.
32 Naranjo NM, Salem I, Harris MA, et al. IFIT3(interferon induced protein with tetratricopeptide repeats 3)modulates STAT1 expression in small extracellular vesicles[J]. Biochem J, 2021, 478(21): 3905-3921.
33 Zhang W, Li Y, Xin S, et al. The emerging roles of IFIT3 in antiviral innate immunity and cellular biology[J]. J Med Virol, 2022: e28259.
34 Fisch D, Bando H, Clough B, et al. Human GBP1 is a microbe-specific gatekeeper of macrophage apoptosis and pyroptosis[J]. EMBO J, 2019, 38(13): e100926.
35 Feng S, Man SM. Captain GBP1: inflammasomes assemble, pyroptotic endgame[J]. Nat Immunol, 2020, 21(8): 829-830.

备注/Memo

备注/Memo:
收稿日期:2023-03-07)
基金项目: 国家自然科学基金青年项目(82202413); 山东省自然科学基金青年项目(ZR2022QH332) 济南市科技局 临床医学科技创新计划(202134058) 济南市中心医院引进人才科研启动经费(YJRC2021010)
通信作者: 张 实, Email: 394873967@qq.com

更新日期/Last Update: 2023-08-20