1 Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome[J]. N Engl J Med, 2017, 377(19): 1904-1905.
2 顾晓凌, 宋 勇. 线粒体DNA在急性肺损伤发生、发展中的作用[J/CD]. 中华肺部疾病杂志(电子版), 2012, 5(4): 348-350.
3 马李杰, 李王平, 金发光. 急性肺损伤/急性呼吸窘迫综合征发病机制的研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2013, 6(1): 65-68.
4 Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries[J]. JAMA, 2016, 315(8): 788-800.
5 张梦薇, 李玉英. 间充质干细胞治疗急性呼吸窘迫综合征:希望和挑战[J/CD]. 中华肺部疾病杂志(电子版), 2022, 15(4): 589-592.
6 Fan E, Brodie D, Slutsky AS. Acute Respiratory Distress Syndrome:Advances in Diagnosis and Treatment[J]. JAMA, 2018, 319(7): 698-710.
7 Ruan SY, Lin HH, Huang CT, et al. Exploring the heterogeneity of effects of corticosteroids on acute respiratory distress syndrome: a systematic review and meta-analysis[J]. Crit Care, 2014, 18(2): R63.
8 Chen H, Wang S, Zhao Y, et al. Correlation analysis of omega-3 fatty acids and mortality of sepsis and sepsis-induced ARDS in adults: data from previous randomized controlled trials[J]. Nutr J, 2018, 17(1): 57.
9 Leng YX, Yang SG, Song YH, et al. Ulinastatin for acute lung injury and acute respiratory distress syndrome: A systematic review and meta-analysis[J]. World J Crit Care Med, 2014, 3(1): 34-41.
10 马娟娟, 陈雪玲, 王 蕾. ARDS患者救治中有创呼吸机辅助呼吸的临床干预及疗效分析[J/CD]. 中华肺部疾病杂志(电子版), 2022, 15(6): 876-878.
11 王 冉, 张 巧, 马千里, 等. 血清学生物标志物对急性呼吸窘迫综合征进展及预后的预测研究[J]. 第三军医大学学报, 2017, 39(19): 1926-1932.
12 Hendrickson CM, Matthay MA. Endothelial biomarkers in human sepsis: pathogenesis and prognosis for ARDS[J]. Pulm Circ, 2018, 8(2): 2045894018769876.
13 Zhang S, Chu C, Wu Z, et al. IFIH1 Contributes to M1 Macrophage Polarization in ARDS[J]. Front Immunol, 2021, 11: 580838.
14 Chu YB, Li J, Jia P, et al. Irf1-and Egr1-activated transcription plays a key role in macrophage polarization: A multiomics sequencing study with partial validation[J]. Int Immunopharmacol, 2021, 99: 108072.
15 Wang AL, Kang XL, Wang J, et al. Irf1-and Egr1-activated transcription plays a key role in macrophage polarization: A multiomics sequencing study with partial validation[J]. Int Immunopharmacol, 2023, 114: 109478.
16 Gattinoni L, Tonetti T, Quintel M. Regional physiology of ARDS[J]. Crit Care, 2017, 21(Suppl 3): 312.
17 Huang X, Xiu H, Zhang S, et al. The role of macrophages in the pathogenesis of ALI/ARDS[J]. Mediators Inflamm, 2018, 2018: 1264913.
18 Tasaka S, Ohshimo S, Takeuchi M, et al. ARDS Clinical Practice Guideline Committee 2021 from the Japanese Respiratory Society, the Japanese Society of Intensive Care Medicine, and the Japanese Society of Respiratory Care Medicine. ARDS clinical practice guideline 2021[J]. Respir Invest, 2022, 60(4): 446-495.
19 Cananzi M, Wohler E, Marzollo A, et al. IFIH1 loss-of-function variants contribute to very early-onset inflammatory bowel disease[J]. Hum Genet, 2021, 140(9): 1299-1312.
20 Aparici-Herraiz I, Sánchez-Sánchez G, Batlle C, et al. IRF1 is required for MDA5(IFIH1)induction by IFN-α, LPS, and poly(I︰C)in murine macrophages[J]. J Innate Immun, 2022: 1-20.
21 Molineros JE, Maiti AK, Sun C, et al. Admixture mapping in lupus identifies multiple functional variants within IFIH1 associated with apoptosis, inflammation, and autoantibody production[J]. Plos Genet, 2013, 9(2): e1003222.
22 Jaeger M, van der Lee R, Cheng SC, et al. The RIG-I-like helicase receptor MDA5(IFIH1)is involved in the host defense against Candida infections[J]. Eur J Clin Microbiol Infect Dis, 2015, 34(5): 963-974.
23 Stone A, Green R, Wilkins C, et al. RIG-I-like receptors direct inflammatory macrophage polarization against West Nile virus infection[J]. Nature Commun, 2019, 10(1): 3649-3665.
24 Feng H, Zhang YB, Gui JF, et al. Interferon regulatory factor 1(IRF1)and anti-pathogen innate immune responses[J]. PLoS Pathog, 2021, 17(1): e1009220.
25 Wang J, Li H, Xue B, et al. IRF1 Promotes the innate immune response to viral infection by enhancing the activation of IRF3[J]. J Virol, 2020, 94(22): e01231- e01220.
26 Zhu X, Guo Q, Zou J, et al. MiR-19a-3p suppresses M1 macrophage polarization by inhibiting STAT1/IRF1 pathway[J]. Front Pharmacol, 2021, 12: 614044.
27 Guo Q, Zhu X, Wei R, et al. miR-130b-3p regulates M1 macrophage polarization via targeting IRF1[J]. J Cell Physiol, 2021, 236(3): 2008-2022.
28 Butturini E, Carcereri de Prati A, Mariotto S. Redox regulation of STAT1 and STAT3 signaling[J]. Int J Mol Sci, 2020, 21(19): 7034.
29 Zuo Y, Feng Q, Jin L, et al. Regulation of the linear ubiquitination of STAT1 controls antiviral interferon signaling[J]. Nat Commun, 2020, 11(1): 1146.
30 Mizoguchi Y, Okada S. Inborn errors of STAT1 immunity[J]. Curr Opin Immunol, 2021, 72: 59-64.
31 Wang Z, Qin J, Zhao J, et al. Inflammatory IFIT3 renders chemotherapy resistance by regulating post-translational modification of VDAC2 in pancreatic cancer[J]. Theranostics, 2020, 10(16): 7178-7192.
32 Naranjo NM, Salem I, Harris MA, et al. IFIT3(interferon induced protein with tetratricopeptide repeats 3)modulates STAT1 expression in small extracellular vesicles[J]. Biochem J, 2021, 478(21): 3905-3921.
33 Zhang W, Li Y, Xin S, et al. The emerging roles of IFIT3 in antiviral innate immunity and cellular biology[J]. J Med Virol, 2022: e28259.
34 Fisch D, Bando H, Clough B, et al. Human GBP1 is a microbe-specific gatekeeper of macrophage apoptosis and pyroptosis[J]. EMBO J, 2019, 38(13): e100926.
35 Feng S, Man SM. Captain GBP1: inflammasomes assemble, pyroptotic endgame[J]. Nat Immunol, 2020, 21(8): 829-830.