|本期目录/Table of Contents|

[1]汪 沛,倪蓓君,元 及,等.卡瑞利珠单抗联合卡铂和培美曲塞治疗进展期肺腺癌的疗效及预后分析[J].中华肺部疾病杂志,2023,(04):511-513.[doi:10.3877/cma.j.issn.1674-6902.2023.04.013 ]
点击复制

卡瑞利珠单抗联合卡铂和培美曲塞治疗进展期肺腺癌的疗效及预后分析(PDF)

《中华肺部疾病杂志》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年04期
页码:
511-513
栏目:
临床研究
出版日期:
2023-08-20

文章信息/Info

Title:
-
作者:
汪 沛1倪蓓君2元 及3宫为一3范 军4
230041 合肥,安徽中科庚玖医院胸外科1;230041 合肥,中国科学院合肥肿瘤医院护理部2;230041 合肥,安徽省武警总队医院心胸外科3;230041 合肥,中国科学技术大学第一附属医院胸外科4
Author(s):
-
关键词:
肺腺癌 进展期 卡瑞利珠单抗 培美曲塞 卡铂
Keywords:
-
分类号:
R734.2
DOI:
10.3877/cma.j.issn.1674-6902.2023.04.013
摘要:
目的 分析卡瑞利珠单抗联合卡铂和培美曲塞化疗治疗进展期肺腺癌的疗效及预后。 方法 选择2021年1月1日至2021年9月31日我院收治的进展期肺腺癌患者59例,随机分为观察组29例,对照组30例,对照组按常规卡铂联合培美曲塞方案化疗,观察组在对照组基础上加用卡瑞利珠单抗,比较两组肿瘤进展、安全性及预后情况。 结果 治疗4个周期、治疗结束时、治疗后1个月、治疗后2个月及治疗后3个月,观察组部分缓解(PR)高于对照组(P<0.05),观察组疾病进展(PD)低于对照组,差异无统计学意义(P>0.05); 两组治疗前CEA及CYRFA21-1对比无统计学意义(P>0.05),观察组治疗后CEA及CYRFA21-1低于对照组(P<0.05); 观察组发生较多反应性毛细血管增生症(RCCEP),不良事件(AEs)与对照组比较统计学意义(P>0.05),两组不良事件Ⅲ级以上对比统计学意义(P>0.05); 观察组中位无进展生存期(mPFS)长于对照组(P<0.05)[(8.31±2.33)个月 vs.(5.87±1.74)个月],观察组中位总生存期(mOS)长于对照组(P<0.05)[(10.22±3.01)个月vs.(7.32±2.14)个月]。 结论 卡瑞利珠单抗联合卡铂和培美曲塞较单纯卡铂联合培美曲塞改善进展期肺腺癌治疗效果好,具有临床意义。
Abstract:
-

参考文献/References:

1 王洪武, 金发光. 晚期非小细胞肺癌多域整合治疗策略[J/CD]. 中华肺部疾病杂志(电子版), 2022, 15(4): 457-461.
2 Mamdani H, Matosevic S, Khalid AB, et al. Immunotherapy in lung cancer: Current landscape and future directions[J]. Front Immunol, 2022, 13: 823618.
3 Higgins KA, Puri S, Gray JE. Systemic and radiation therapy approaches for locally advanced non-small-cell lung cancer[J]. J Clin Oncol, 2022, 40(6): 576-585.
4 Yi M, Zheng X, Niu M, et al. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions[J]. Mol Cancer, 2022, 21(1): 28.
5 Zhou C, Chen G, Huang Y, et al. Camrelizumab plus carboplatin and pemetrexed versus chemotherapy alone in chemotherapy-naive patients with advanced non-squamous non-small-cell lung cancer(CameL): a randomised, open-label, multicentre, phase 3 trial[J]. Lancet Respir Med, 2021, 9(3): 305-314.
6 Erdogu V, Çtak N, Sezen CB, et al. Comparison of 6th, 7th, and 8th editions of the TNM staging in non-small cell lung cancer patients: Validation of the 8th edition of TNM staging[J]. Turk Gogus Kalp Damar Cerrahisi Derg, 2022, 30(3): 395-403.
7 Manitz J, D'Angelo SP, Apolo AB, et al. Comparison of tumor assessments using RECIST 1.1 and irRECIST, and association with overall survival[J]. J Immunother Cancer, 2022, 10(2): e003302.
8 Young J, Badgery-Parker T, Dobbins T, et al. Comparison of ECOG/WHO performance status and ASA score as a measure of functional status[J]. J Pain Symptom Manage, 2015, 49(2): 258-264.
9 Freites-Martinez A, Santana N, Arias-Santiago S, et al. Using the common terminology criteria for adverse events(CTCAE - Version 5.0)to evaluate the severity of adverse events of anticancer therapies. CTCAE versión 5.0. Evaluación de la gravedad de los eventos adversos dermatológicos de las terapias antineoplásicas[J]. Actas Dermosifiliogr(Engl Ed), 2021, 112(1): 90-92.
10 Klement JD, Redd PS, Lu C, et al. Tumor PD-L1 engages myeloid PD-1 to suppress type I interferon to impair cytotoxic T lymphocyte recruitment[J]. Cancer Cell, 2023, 41(3): 620-636.
11 Lu C, Paschall AV, Shi H,et al. The MLL1-H3K4me3 Axis-Mediated PD-L1 Expression and Pancreatic Cancer Immune Evasion[J]. J Natl Cancer Inst, 2017, 109(6): djw283.
12 Homma S, Hayashi K, Yoshida K, et al. Nafamostat mesilate, a serine protease inhibitor, suppresses interferon-gamma-induced up-regulation of programmed cell death ligand 1 in human cancer cells[J]. Int Immunopharmacol, 2018, 54: 39-45.
13 Chen X, Gao A, Zhang F, et al. ILT4 inhibition prevents TAM- and dysfunctional T cell-mediated immunosuppression and enhances the efficacy of anti-PD-L1 therapy in NSCLC with EGFR activation[J]. Theranostics, 2021, 11(7): 3392-3416.
14 Hofmeyer KA, Jeon H, Zang X. The PD-1/PD-L1(B7-H1)pathway in chronic infection-induced cytotoxic T lymphocyte exhaustion[J]. J Biomed Biotechnol, 2011, 2011: 451694.
15 Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer[J]. Am J Cancer Res, 2020, 10(3): 727-742.
16 Lenouvel D, González-Moles MÁ, Talbaoui A, et al. An update of knowledge on PD-L1 in head and neck cancers: Physiologic, prognostic and therapeutic perspectives[J]. Oral Dis, 2020, 26(3): 511-526.
17 Salmaninejad A, Valilou SF, Shabgah AG, et al. PD-1/PD-L1 pathway:Basic biology and role in cancer immunotherapy[J]. J Cell Physiol, 2019, 234(10): 16824-16837.
18 Zhang L, Zhang M, Xu J, et al. The role of the programmed cell death protein-1/programmed death-ligand 1 pathway, regulatory T cells and T helper 17 cells in tumor immunity: a narrative review[J]. Ann Transl Med, 2020, 8(22): 1526.
19 Hsu PC, Yang CT, Jablons DM, et al. The role of yes-associated protein(YAP)in regulating programmed death-ligand 1(PD-L1)in thoracic cancer[J]. Biomedicines, 2018, 6(4): 114.
20 Kim JM, Chen DS. Immune escape to PD-L1/PD-1 blockade: seven steps to success(or failure)[J]. Ann Oncol, 2016, 27(8): 1492-1504.
21 Yu H, Chen P, Cai X, et al. Efficacy and safety of PD-L1 inhibitors versus PD-1 inhibitors in first-line treatment with chemotherapy for extensive-stage small-cell lung cancer[J]. Cancer Immunol Immunother, 2022, 71(3): 637-644.
22 Guzik K, Tomala M, Muszak D, et al. Development of the inhibitors that target the PD-1/PD-L1 interaction-A brief look at progress on small molecules, peptides and macrocycles[J]. Molecules, 2019, 24(11): 2071.
23 罗详冲, 李高峰. PD-1抑制剂卡瑞利珠单抗在晚期恶性肿瘤中的应用进展[J]. 解放军医学杂志, 2020, 45(6): 672-679.
24 邹 琴, 龙 玲, 叶 容, 等. PD-1抑制剂免疫治疗NSCLC所致反应性毛细血管增生症的研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2023, 16(2): 278-280.
25 Fu J, Wang F, Dong LH, et al. Preclinical evaluation of the efficacy,pharmacokinetics and immunogenicity of JS-001, a programmed cell death protein-1(PD-1)monoclonal antibody[J]. Acta Pharmacol Sin, 2017, 38(5): 710-718.
26 Li F, Li J, Yin K, Zhang J, et al. CS1003, a novel human and mouse cross-reactive PD-1 monoclonal antibody for cancer therapy[J]. Acta Pharmacol Sin, 2021, 42(1): 142-148.
27 Hutchins B, Starling GC, McCoy MA, et al. Biophysical and Immunological Characterization and In Vivo Pharmacokinetics and Toxicology in Nonhuman Primates of the Anti-PD-1 Antibody Pembrolizumab[J]. Mol Cancer Ther, 2020, 19(6): 1298-1307.
28 Gjetting T, Gad M, Fröhlich C, et al. Sym021, a promising anti-PD1 clinical candidate antibody derived from a new chicken antibody discovery platform[J]. Mabs, 2019, 11(4): 666-680.
29 Ok CY, Young KH. Targeting the programmed death-1 pathway in lymphoid neoplasms[J]. Cancer Treat Rev, 2017, 54: 99-109.
30 Zak KM, Grudnik P, Magiera K, et al. Structural Biology of the Immune Checkpoint Receptor PD-1 and Its Ligands PD-L1/PD-L2[J]. Structure, 2017, 25(8): 1163-1174.

备注/Memo

备注/Memo:
收稿日期:2023-01-14)
通信作者: 范 军, Email: Fanjun_110@163.com

更新日期/Last Update: 2023-08-20