1 Martinez FJ, Collard HR, Pardo A, et al. Idiopathic pulmonary fibrosis[J]. Nat Rev Dis Primers, 2017, 3: 17074.
2 Jo HE, Randhawa S, Corte TJ, et al. Idiopathic pulmonary fibrosis and the elderly: Diagnosis and management considerations[J]. Drugs Aging, 2016, 33(5): 321-334.
3 Maher TM, Bendstrup E, Dron L, et al. Global incidence and prevalence of idiopathic pulmonary fibrosis[J]. Respir Res, 2021, 22(1): 197.
4 Olson AL, Gifford AH, Inase N, et al.The epidemiology of idiopathic pulmonary fibrosis and interstitial lung diseases at risk of a progressive-fibrosing phenotype[J]. Eur Respir Rev, 2018, 27(150): 180077.
5 Raghu G, Remy-Jardin M, Myers JL, et al. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline[J]. Am J Respir Crit Care Med, 2018, 198(5): e44-e68.
6 Karimi-Shah BA, Chowdhury BA. Forced vital capacity in idiopathic pulmonary fibrosis-FDA review of pirfenidone and nintedanib[J]. N Engl J Med, 2015, 372(13): 1189-1191.
7 Ley B, Collard HR, King Jr TE. Clinical course and prediction of survival in idiopathic pulmonary fibrosis[J]. Am J Respir Crit Care Med, 2011, 183(4): 431-440.
8 Vyas S, Zaganjor E, Haigis MC. Mitochondria and cancer[J]. Cell, 2016, 166(3): 555-566.
9 Zemirli N, Morel E, Molino D. Mitochondrial dynamics in basal and stressful conditions[J]. Int J Mol Sci, 2018, 19(2): 564.
10 Gonzalez-Gonzalez FJ, Chandel NS, Jain M, et al. Reactive oxygen species as signaling molecules in the development of lung fibrosis[J]. Transl Res, 2017, 190: 61-68.
11 Bueno M, Lai YC, Romero Y, et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis[J]. J Clin Invest, 2015, 125(2): 521-538.
12 Kobayashi K, Araya J, Minagawa S, et al. Involvement of PARK2-mediated mitophagy in idiopathic pulmonary fibrosis pathogenesis[J]. J Immunol, 2016, 197(2): 504-516.
13 Yu GY, Tzouvelekis A, Wang R, et al.Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function[J]. Nat Med, 2018, 24(1): 39-49.
14 Gu LL, Casey JLL, Andrabi SA, et al. Mitochondrial calcium uniporter regulates PGC-1alpha expression to mediate metabolic reprogramming in pulmonary fibrosis[J]. Redox Biol, 2019, 26: 101307.
15 Xie N, Tan Z, Banerjee S, et al. Glycolytic Reprogramming in Myofibroblast Differentiation and Lung Fibrosis[J]. Am J Respir Crit Care Med, 2015, 192(12): 1462-1474.
16 Kottmann RM, Kulkarni AA, Smolnycki KA, et al. Lactic acid is elevated in idiopathic pulmonary fibrosis and induces myofibroblast differentiation via pH-dependent activation of transforming growth factor-beta[J]. Am J Respir Crit Care Med, 2012, 186(8): 740-751.
17 Chu SG, Villalba JA, Liang XL, et al. Palmitic acid-rich high-fat diet exacerbates experimental pulmonary fibrosis by modulating endoplasmic reticulum stress[J]. Am J Respir Cell Mol Biol, 2019, 61(6): 737-746.
18 Kim HS, Yoo HJ, Lee KM, et al. Stearic acid attenuates profibrotic signalling in idiopathic pulmonary fibrosis[J]. Respirology, 2021, 26(3): 255-263.
19 Wang ZW, Chen L, Huang Y, et al. Pharmaceutical targeting of succinate dehydrogenase in fibroblasts controls bleomycin-induced lung fibrosis[J]. Redox Biol, 2021, 46: 102082.
20 Yan F, Wen ZS, Wang Rui, et al. Identification of the lipid biomarkers from plasma in idiopathic pulmonary fibrosis by Lipidomics[J]. BMC Pulm Med, 2017, 17(1): 174.
21 Han J, Kaufman RJ. The role of ER stress in lipid metabolism and lipotoxicity[J]. J Lipid Res, 2016, 57(8): 1329-1338.
22 Volmer R, der Ploeg K van, Ron D. Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains[J]. Proc Natl Acad Sci U S A, 2013, 110(12): 4628-4633.
23 Velázquez AP, Tatsuta T, Ghillebert R, et al. Lipid droplet-mediated ER homeostasis regulates autophagy and cell survival during starvation[J]. J Cell Biol, 2016, 212(6): 621-631.
24 Chung KP, Hsu CL, Fan LC, et al. Mitofusins regulate lipid metabolism to mediate the development of lung fibrosis[J]. Nat Commun, 2019, 10(1): 3390.
25 Shin H, Park S, Hong J, et al. Overexpression of fatty acid synthase attenuates bleomycin induced lung fibrosis by restoring mitochondrial dysfunction in mice[J]. Sci Rep, 2023, 13(1): 9044.
26 Jung MY, Kang JH, Hernandez DM, et al. Fatty acid synthase is required for profibrotic TGF-beta signaling[J]. FASEB J, 2018, 32(7): 3803-3815.
27 Hwang S, Chung KW. Targeting fatty acid metabolism for fibrotic disorders[J]. Arch Pharm Res, 2021, 44(9-10): 839-856.
28 Genovese T, Mazzon E, Paola RD, et al. Role of endogenous and exogenous ligands for the peroxisome proliferator-activated receptor alpha in the development of bleomycin-induced lung injury[J]. Shock, 2005, 24(6): 547-555.
29 Cui HC, Xie N, Banerjee S, et al. Lung myofibroblasts promote macrophage profibrotic activity through lactate-induced histone lactylation[J]. Am J Respir Cell Mol Biol, 2021, 64(1): 115-125.
30 Schwörer S, Pavlova NN, Cimino FV, et al. Fibroblast pyruvate carboxylase is required for collagen production in the tumour microenvironment[J]. Nat Metab, 2021, 3(11): 1484-1499.
31 Higo H, Ohashi K, Tomida S, et al. Identification of targetable kinases in idiopathic pulmonary fibrosis[J]. Respir Res, 2022, 23(1): 20.
32 Ducker GS, Rabinowitz JD. One-carbon metabolism in health and disease[J]. Cell Metab, 2017, 25(1): 27-42.
33 Zhu ZY, Kiang KMY, Li N, et al. Folate enzyme MTHFD2 links one-carbon metabolism to unfolded protein response in glioblastoma[J]. Cancer Lett, 2022, 549: 215903.
34 Hamanaka RB, O'Leary EM, Witt LJ, et al. Glutamine metabolism is required for collagen protein synthesis in lung fibroblasts[J]. Am J Respir Cell Mol Biol, 2019, 61(5): 597-606.