|本期目录/Table of Contents|

[1]邱凌霄,王创业,卿 斌,等.基于转录组学筛选特发性肺纤维化的枢纽基因和信号通路[J].中华肺部疾病杂志,2024,(02):212-217.[doi:10.3877/cma.j.issn.1674-6902.2024.02.008]
 Qiu Lingxiao,Wang Chuangye,Qing Bin,et al.Identifying hub genes and pathways in idiopathic pulmonary fibrosis based on transcriptomics[J].,2024,(02):212-217.[doi:10.3877/cma.j.issn.1674-6902.2024.02.008]
点击复制

基于转录组学筛选特发性肺纤维化的枢纽基因和信号通路(PDF)

《中华肺部疾病杂志》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年02期
页码:
212-217
栏目:
论著
出版日期:
2024-04-20

文章信息/Info

Title:
Identifying hub genes and pathways in idiopathic pulmonary fibrosis based on transcriptomics
作者:
邱凌霄1王创业1卿 斌1刘锦程1张鑫烨2武文娟3邢德冰4郭 亮1徐 智1王 斌1
400037 重庆,陆军(第三)军医大学第二附属医院呼吸与危重症医学科1、中医科4
450052 郑州,郑州大学第一附属医院胸外科2
450003 郑州,河南省人民医院老年医学科3
Author(s):
Qiu Lingxiao1 Wang Chuangye1 Qing Bin1 Liu Jincheng1 Zhang Xinye2 Wu Wenjuan3 Xing Debing4 Guo Liang1 Xu Zhi1 Wang Bin1.
1Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China; 2Thoracic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; 3Department of Geriatrics, Henan Provincial People's Hospital, Zhengzhou 450003, China; 4Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China.
关键词:
特发性肺纤维化 差异表达基因 基因表达综合数据库
Keywords:
Idiopathic pulmonary fibrosis Differentially expressed genes Gene Expression Omnibus database
分类号:
R563
DOI:
10.3877/cma.j.issn.1674-6902.2024.02.008
摘要:
目的 基于转录组学数据筛选特发性肺纤维化(idiopathic pulmonary fibrosis, IPF)致病的枢纽基因和相关信号通路。方法 从基因表达综合(gene expression omnibus, GEO)数据库中下载GSE17978数据集,应用GEO2R筛选差异表达基因(differentially expressed genes, DEGs),采用R软件ggplot2包和Heatmap包分别绘制DEGs的火山图和热图。采用R软件的clusterProfiler包进行DEGs基因本体论(gene ontology, GO)和京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes, KEGG)通路分析。采用R软件中的ggplot2包绘制气泡图。运用STRING和Cytoscape软件构建DEGs的蛋白质互作网络,应用Cytoscape的Cytohubba插件筛选参与IPF发病的枢纽基因。采用GSE10667数据集验证DEGs的差异表达。结果 共获得92个DEGs,其中上调基因49个,下调基因43个; GO分析和KEGG通路富集结果显示,DEGs主要在细胞外基质组织、胶原蛋白结合、PI3K-Akt信号通路及TGF-β信号通路等显著富集。运用STRING和cytoscape构建了DEGs的蛋白质互作网络,与IPF相关10个枢纽基因为FN1、CXCL12、DCN、COL1A1、MMP2、SPARC、SPP1、POSTN、COL1A2和COL3A1,其中9个枢纽基因在验证数据集GSE10667中有显著差异表达。结论 获得的92个DEGs和9个枢纽基因可能是IPF潜在的生物标志物。
Abstract:
Objective Based on transcriptomic data, identify hub genes and related signaling pathways involved in the pathogenesis of idiopathic pulmonary fibrosis(IPF). Methods GSE17978 dataset was downloaded from the GEO database. GEO2R tool was utilized to screen differentially expressed genes(DEGs). Ggplot2 package and Heatmap package in the R software were used to draw volcano maps and heat maps for DEGs. The R software clusterProfiler package was used to perform Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis on DEGs. The R software ggplot2 package was used to draw bubble charts. Using STRING and Cytoscape software to construct a protein-protein interaction network of DEGs. Cytohubba plugin in Cytoscape was performed to screen the hub genes involved in IPF. The GSE10667 dataset was used to verify the hub genes of DEGs. Results A total of 92 DEGs were obtained, including 49 up-regulated genes and 43 down-regulated genes. GO analysis and KEGG pathway enrichment analysis showed that DEGs are mainly enriched in extracellular matrix organization, collagen-containing extracellular matrix, PI3K-Akt signaling pathway, and TGF-beta signaling pathway. Protein-protein interaction networks of DEGs was constructed using STRING and Cytoscape, and 10 hub genes(FN1, CXCL12, DCN, COL1A1, MMP2, SPARC, SPP1, POSTN, COL1A2 and COL3A1)related to IPF were identified. Among above 10 hub genes, 9 genes showed significant differential expression in the validation dataset GSE10667. Conclusion The obtained 92 DEGs and 9 hub genes may be potential biomarkers of IPF.

参考文献/References:

1 Raghu G, Remy-Jardin M, Richeldi L, et al. Idiopathic pulmonary fibrosis(an Update)and progressive pulmonary fibrosis in adults: An official ATS/ERS/JRS/ALAT clinical practice guideline[J]. Am J Respir Crit Care Med, 2022, 205(9): e18-e47.
2 Neely ML, Hellkamp AS, Bender S, et al. Lung function trajectories in patients with idiopathic pulmonary fibrosis [J]. Respir Res, 2023, 24(1): 209.
3 刘雪娇, 盛伟利, 丁艳艳, 等. 特发性肺纤维化急性加重患者预后危险因素及意义[J/CD]. 中华肺部疾病杂志(电子版), 2022, 15(2): 212-214.
4 Raghu G, Chen S-Y, Hou Q, et al. Incidence and prevalence of idiopathic pulmonary fibrosis in US adults 18-64 years old [J]. Eur Respir J, 2016, 48(1): 179-186.
5 Behr J, Günther A, Ammenwerth W, et al. [German guideline for diagnosis and management of idiopathic pulmonary fibrosis][J]. Pneumologie(Stuttgart, Germany), 2013, 67(2): 81-111.
6 Podolanczuk AJ, Thomson CC, Remy-Jardin M, et al. Idiopathic pulmonary fibrosis: state of the art for 2023 [J]. Eur Respir J, 2023, 61(4): 2200957.
7 Spagnolo P, Kropski JA, Jones MG, et al. Idiopathic pulmonary fibrosis: Disease mechanisms and drug development[J]. Pharmacol Therapeut, 2021, 222: 107798.
8 Ley B, Collard HR, King TE. Clinical course and prediction of survival in idiopathic pulmonary fibrosis[J]. Am J Respir Crit Care Med, 2011, 183(4): 431-440.
9 Moss BJ, Ryter SW, Rosrs IO. Pathogenic mechanisms underlying idiopathic pulmonary fibrosis[J]. Ann Rev Pathol, 2022, 17: 515-546.
10 Gauthier J, Vincent AT, Charette SJ, et al. A brief history of bioinformatics [J]. Brief Bioinformat, 2019, 20(6): 1981-1996.
11 Thind AS, Monga I, Thakur PK, et al. Demystifying emerging bulk RNA-Seq applications: the application and utility of bioinformatic methodology[J]. Brief Bioinformat, 2021, 22(6): bbab259.
12 Reyna MA, Haan D, Paczkowska M, et al. Pathway and network analysis of more than 2500 whole cancer genomes[J]. Nature communications, 2020, 11(1): 729.
13 Ubaida-Mohien C, Lyashkov A, Gonzalez-Freire M, et al. Discovery proteomics in aging human skeletal muscle finds change in spliceosome, immunity, proteostasis and mitochondria[J]. eLife, 2019, 8: e49874.
14 Wang Z, Diao J, Zhao X, et al. Clinical and functional significance of a novel ferroptosis-related prognosis signature in lung adenocarcinoma[J]. Clin Translat Med, 2021, 11(3): e364.
15 Phan THG, Paliogiannis P, Nasrallah GK, et al. Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis[J]. Cellular Molecul Life Sci, 2021, 78(5): 2031-2057.
16 Bellou V, Belbasis L, Evangelou E. Tobacco smoking and risk for pulmonary fibrosis: A prospective cohort study from the UK biobank[J]. Chest, 2021, 160(3): 983-993.
17 Gandhi S, Tonelli R, Murray M, et al. Environmental causes of idiopathic pulmonary fibrosis[J]. Int J Mol Sci, 2023, 24(22): 38003670.
18 Parimon T, Yao C, Stripp BR, et al. Alveolar epithelial type Ⅱ cells as drivers of lung fibrosis in idiopathic pulmonary fibrosis[J]. Internat J Molecul Sci, 2020, 21(7): E2269.
19 Noble PW, Albera C, Bradford WZ, et al. Pirfenidone in patients with idiopathic pulmonary fibrosis(CAPACITY): two randomised trials [J]. Lancet(London, England), 2011, 377(9779): 1760-1769.
20 Richeldi L, Du Bois RM, Raghu G, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis[J]. New Engl J Med, 2014, 370(22): 2071-2082.
21 Liu GY, Budinger GRS, Dematte JE. Advances in the management of idiopathic pulmonary fibrosis and progressive pulmonary fibrosis[J]. BMJ(Clinical research ed), 2022, 377: e066354.
22 Raghu G, Rochwerg B, Zhang Y, et al. An official ATS/ERS/JRS/ALAT clinical practice guideline: Treatment of idiopathic pulmonary fibrosis. An update of the 2011 clinical practice guideline[J]. Am J Respir Crit Care Med, 2015, 192(2): e3-e19.
23 Alsomali H, Palmer E, Aujayeb A, et al. Early diagnosis and treatment of idiopathic pulmonary fibrosis: A narrative review[J]. Pulmon Ther, 2023, 9(2): 177-193.
24 Kishaba T. Evaluation and management of idiopathic pulmonary fibrosis[J]. Respir Invest, 2019, 57(4): 300-311.
25 Alsafadi HN, Staab-Weijnitz CA, Lehmann M, et al. An ex vivo model to induce early fibrosis-like changes in human precision-cut lung slices[J]. Am J Physiol Lung Cell Molecul Physiol, 2017, 312(6): L896-L902.
26 Yu DH, Ruan XL, Huang JY, et al. Analysis of the interaction Network of Hub miRNAs-Hub genes, Being involved in idiopathic pulmonary fibers and its emerging role in non-small cell lung cancer[J]. Front Genet, 2020, 11: 302.
27 Selman M, Ruiz V, Cabrera S, et al. TIMP-1, -2, -3, and -4 in idiopathic pulmonary fibrosis. A prevailing nondegradative lung microenvironment? [J]. Am J Physiol Lung Cell Molecul Physiol, 2000, 279(3): L562-l574.
28 Morse C, Tabib T, Sembrat J, et al. Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis[J]. Eur Respir J, 2019, 54(2): 1802441.
29 Andersson-SJöland A, De Alba CG, Nihlberg K, et al. Fibrocytes are a potential source of lung fibroblasts in idiopathic pulmonary fibrosis[J]. Int J Biochem Cell Biol, 2008, 40(10): 2129-2140.
30 Gubbiotti MA, Vallet SD, Ricard-Blum S, et al. Decorin interacting network: A comprehensive analysis of decorin-binding partners and their versatile functions[J]. J Int Soc Matr Biol, 2016, 55: 7-21.
31 Nikaido T, Tanino Y, Wang X, et al. Serum decorin is a potential prognostic biomarker in patients with acute exacerbation of idiopathic pulmonary fibrosis[J]. J Thor Dis, 2018, 10(9): 5346-5358.

备注/Memo

备注/Memo:
基金项目: 重庆市科卫联合医学科研项目(2020FYYX179) 陆军军医大学第二附属医院“青博计划”(2023YQB057) 通信作者: 王 斌, Email: wangbin@tmmu.edu.cn
更新日期/Last Update: 2024-04-20