1 高嘉营, 金发光. 肺癌自身抗体在肺癌诊断中的研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2023, 16(5): 739-741.
2 Oudkerk M, Liu S, Heuvelmans MA, et al. Lung cancer LDCT screening and mortality reduction-evidence, pitfalls and future perspectives[J]. Nat Rev Clin Oncol, 2021, 18(3): 135-151.
3 Bach PB, Mirkin JN, Oliver TK, et al. Benefits and harms of CT screening for lung cancer: a systematic review[J]. JAMA, 2012, 307(22): 2418-2429.
4 Jonas DE, Reuland DS, Reddy SM, et al. Screening for lung cancer with low-dose computed tomography: Updated evidence report and systematic review for the US preventive services task force[J]. JAMA, 2021, 325(10): 971-987.
5 Mcwilliams A, Tammemagi MC, Mayo JR, et al. Probability of cancer in pulmonary nodules detected on first screening CT[J]. N Engl J Med, 2013, 369(10): 910-919.
6 杨 丽, 钱桂生. 肺结节临床精准诊断的新理念[J/CD]. 中华肺部疾病杂志(电子版), 2022, 15(1): 1-5.
7 Hawkins S, Wang H, Liu Y, et al. Predicting malignant nodules from screening CT scans[J]. J Thorac Oncol, 2016, 11(12): 2120-2128.
8 Zhao W, Yang J, Sun Y, et al. 3D deep learning from CT scans predicts tumor invasiveness of subcentimeter pulmonary adenocarcinomas[J]. Cancer Res, 2018, 78(24): 6881-6889.
9 Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography[J]. Nature Medicine, 2019, 25(6): 954-961.
10 Venkadesh KV, Setio AaA, Schreuder A, et al. Deep learning for malignancy risk estimation of pulmonary nodules detected at low-dose screening CT[J]. Radiology, 2021, 300(2): 438-447.
11 吴阶平医学基金会模拟医学部胸外科专委会. 人工智能在肺结节诊治中的应用专家共识[J]. 中国肺癌杂志, 2022, 25(4): 219-225.
12 Pei Q, Luo Y, Chen Y, et al. Artificial intelligence in clinical applications for lung cancer: diagnosis, treatment and prognosis[J]. Clin Chem Lab Med, 2022, 60(12): 1974-1983.
13 中华医学会呼吸病学分会肺癌学组, 中国肺癌防治联盟专家组. 肺结节诊治中国专家共识(2018年版)[J]. 中华结核和呼吸杂志, 2018, 41(10): 763-771.
14 Li C, Lei S, Ding L, et al. Global burden and trends of lung cancer incidence and mortality[J]. Chin Med J(Engl), 2023, 136(13): 1583-1590.
15 Seijo L M, Peled N, Ajona D, et al. Biomarkers in lung cancer screening: Achievements, promises, and challenges[J]. J Thor Oncol, 2019, 14(3): 343-357.
16 Chabon JJ, Hamilton EG, Kurtz DM, et al. Integrating genomic features for non-invasive early lung cancer detection[J]. Nature, 2020, 580(7802): 245-251.
17 Chamberlin J, Kocher MR, Waltz J, et al. Automated detection of lung nodules and coronary artery calcium using artificial intelligence on low-dose CT scans for lung cancer screening: accuracy and prognostic value[J]. BMC Med, 2021, 19(1): 55.
18 Wang X, Gao M, Xie J, et al. Development, validation, and comparison of image-based, clinical feature-based and fusion artificial intelligence diagnostic models in differentiating benign and malignant pulmonary ground-glass nodules[J]. Front Oncol, 2022, 12: 892890.
19 Yoshida K, Gowers KHC, Lee-Six H, et al. Tobacco smoking and somatic mutations in human bronchial epithelium[J]. Nature, 2020, 578(7794): 266-272.
20 Daniel M, Keefe FJ, Lyna P, et al. Persistent smoking after a diagnosis of lung cancer is associated with higher reported pain levels[J]. J Pain, 2009, 10(3): 323-328.
21 Chen WQ, Zhang SW, Zou XN, et al. Cancer incidence and mortality in china, 2006[J]. Chin J Cancer Res, 2011, 23(1): 3-9.
22 Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33.
23 Liang ZR, Ye M, Lv FJ, et al. Differential diagnosis of benign and malignant patchy ground-glass opacity by thin-section computed tomography[J]. BMC Cancer, 2022, 22(1): 1206.
24 Ragavan M, Patel MI. The evolving landscape of sex-based differences in lung cancer: a distinct disease in women[J]. Eur Respir Rev, 2022, 31(163). 210100.
25 Macrosty CR, Rivera MP. Lung cancer in women: A modern epidemic[J]. Clin Chest Med, 2020, 41(1): 53-65.
26 Li X, Zhang W, Yu Y, et al. CT features and quantitative analysis of subsolid nodule lung adenocarcinoma for pathological classification prediction[J]. BMC Cancer, 2020, 20(1): 60.
27 Chu ZG, Li WJ, Fu BJ, et al. CT Characteristics for predicting invasiveness in pulmonary pure ground-glass nodules[J]. Am J Roentgenol, 2020, 215(2): 351-358.
28 Jacob M, Romano J, Ara Jo D, et al. Predicting lung nodules malignancy[J]. Pulmonol, 2022, 28(6): 454-460.
29 Gao Y, Chen Y, Jiang Y, et al. Artificial intelligence algorithm-based feature extraction of computed tomography images and analysis of benign and malignant pulmonary nodules[J]. Computat Intell Neurosci, 2022, 2022: 5762623.
30 白 静. 球形肺炎的CT诊断价值与鉴别诊断分析[J]. 中国医疗器械信息, 2019, 25(20): 1-2+188.
31 唐 志, 周建国. 非实性肺结节CT影像收缩力表现与侵袭性对照分析[J]. 医学影像学杂志, 2023, 33(3): 431-434.