|本期目录/Table of Contents|

[1]殷国青,曾 莉,贺斌峰,等.Rab26负性调控Nrf2增强肺癌耐药细胞对奥希替尼的敏感性[J].中华肺部疾病杂志,2024,(03):349-355.[doi:10.3877/cma.j.issn.1674-6902.2024.03.002 ]
 Yin Guoqing,Zeng Li,He Binfeng,et al.Rab26 enhances the sensitivity of lung cancer cells resistant to Osimertinib by negative regulation of Nrf2[J].,2024,(03):349-355.[doi:10.3877/cma.j.issn.1674-6902.2024.03.002 ]
点击复制

Rab26负性调控Nrf2增强肺癌耐药细胞对奥希替尼的敏感性(PDF)

《中华肺部疾病杂志》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年03期
页码:
349-355
栏目:
论著
出版日期:
2024-06-25

文章信息/Info

Title:
Rab26 enhances the sensitivity of lung cancer cells resistant to Osimertinib by negative regulation of Nrf2
作者:
殷国青1曾 莉2贺斌峰2孙芬芬1
400042 重庆,陆军特色医学中心呼吸科1
400037 重庆,陆军(第三)军医大学第二附属医院全科医学科2
Author(s):
Yin Guoqing1 Zeng Li2 He Binfeng2 Sun Fenfen1.
1Department of Respiratory, Army Medical Center of PLA, Chongqing, 400042; 2Department of General practice, Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
关键词:
支气管肺癌 Rab26 奥希替尼耐药 Nrf2 氧化应激
Keywords:
Bronchogenic carcinoma Rab26 Osimertinib resistance Nrf2 Oxidative Stress
分类号:
R734.2
DOI:
10.3877/cma.j.issn.1674-6902.2024.03.002
摘要:
目的 分析Rab26在奥希替尼耐药细胞中的表达及调控肺癌耐药细胞对奥希替尼敏感性的作用和机制。方法 采用浓度梯度递增法诱导H1975细胞为奥希替尼耐药细胞株(H1975OR)。根据Western blot和qPCR检测H1975、H1975OR中Rab26与核因子红细胞2相关因子2(nuclear factor erythroid 2-related factor 2, Nrf2)mRNA及蛋白表达水平。对Rab26进行过表达慢病毒感染H1975OR细胞(Rab26 OE组)后给予1 μM奥希替尼处理48 h,通过CCK-8和TUNEL判断细胞活力和凋亡情况,用流式细胞术检测细胞ROS水平。用Western blot检测H1975和H1975OR中Nrf2蛋白经10 mM MG132处理8 h后的表达水平。对Nrf2进行siRNA转染H1975OR细胞后给予1 μM奥希替尼处理48 h,通过CCK-8判断细胞活力,利用流式细胞术检测细胞ROS水平。结果 H1975OR中Rab26 mRNA和蛋白表达低于H1975细胞(P<0.05),H1975OR中Nrf2蛋白表达高于H1975细胞(P<0.05),H1975OR组和H1975组之间的mRNA水平差异无统计学意义(P>0.05)。奥希替尼干预后Rab26 OE组的细胞活力低于Vector组,ROS水平和凋亡水平较Vector组升高(P<0.05)。Rab26 OE组中Nrf2蛋白表达水平较Vector组降低, 两组间Nrf2 mRNA差异无统计学意义(P>0.05)。经MG132处理,Nrf2蛋白水平在Vector组和Rab26 OE组中升高(P>0.05)。敲低Nrf2,奥希替尼干预增加H1975OR细胞中ROS水平,抑制其细胞活力。结论 Rab26可负性调控Nrf2蛋白表达,促进奥希替尼诱导的ROS的过度产生,促进细胞凋亡,增强肺癌耐药细胞对奥希替尼的敏感性。
Abstract:
Objective To explore the expression of Rab26 in osimertinib-resistant cells, and the role and mechanism of regulating lung cancer resistant cells'sensitivity to osimertinib. Methods Using a concentration gradient increasing method, induce H1975 cells to become osimertinib-resistant cell line(H1975OR). Western blot and qPCR were utilized to detect the expression levels of Rab26 and Nrf2 mRNA and proteins in H1975 and H1975OR. After overexpressing Rab26 through lentiviral infection in H1975OR cells(Rab26 OE group), continue to treat them with 1 μM osimertinib for 48 hours. Assess cell viability and apoptosis through CCK-8 and TUNEL, and evaluate ROS levels through flow cytometry. Use Western blot to assess Nrf2 protein expression levels in H1975 and H1975OR after treatment with 10 mM MG132 for 8 hours. Transfect H1975OR cells with Nrf2 siRNA, followed by treatment with 1 μM osimertinib for 48 hours, and evaluate cell viability using CCK-8 and ROS levels through flow cytometry. Results Rab26 mRNA and protein expression in H1975OR were significantly lower than in H1975 cells(P<0.05), while Nrf2 protein expression in H1975OR was significantly higher than in H1975 cells(P<0.05), with no significant difference at the mRNA level between the two groups(P>0.05). After osimertinib intervention, the cell viability of the Rab26 OE group was significantly lower than the control group(Vector), with a significant increase in apoptosis rate and ROS levels compared to the Vector group(P<0.05). The expression level of Nrf2 protein in the Rab26 OE group was significantly lower than in the Vector group, but there was no significant difference in Nrf2 mRNA between the two groups(P>0.05). After MG132 treatment, the Nrf2 protein level significantly increased in both the Vector group and Rab26 OE group(P>0.05). Knocking down Nrf2 significantly increased ROS levels in H1975OR cells after osimertinib intervention, while inhibiting cell viability. Conclusion Rab26 may promote the oxidative stress response induced by osimertinib by negatively regulating Nrf2, enhancing sensitivity of lung cancer resistant cells to osimertinib.

参考文献/References:

1 Jänne PA, Yang JCH, Kim DW, et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer[J]. New England J Med, 2015, 372(18): 1689-1699.
2 张 剑, 卢从华, 李江华, 等. 根据转录组学分析奥希替尼获得性耐药机制的研究[J/CD]. 中华肺部疾病杂志(电子版), 2024, 17(2): 195-200.
3 Stenmark H. Rab GTPases as coordinators of vesicle traffic[J]. Nat Rev Molecul Cell Biol, 2009, 10(8): 513-525.
4 Prashar A, Schnettger L, Bernard EM, et al. Rab GTPases in immunity and inflammation[J]. Front Cell Infect Microbiol, 2017, 7: 435.
5 Langemeyer L, Fröhlich F, Ungermann C. Rab GTPase function in endosome and lysosome biogenesis[J]. Trends Cell Biol, 2018, 28(11): 957-970.
6 Gong D, Liu X, Wu P, et al. Rab26 alleviates sepsis-induced immunosuppression as a master regulator of macrophage ferroptosis and polarization shift[J]. Free Rad Biol Med, 2024, 212: 271-283.
7 Li C, Fan Y, Lan TH, et al. Rab26 modulates the cell surface transport of α2-adrenergic receptors from the Golgi[J]. J Biolog Chem, 2012, 287(51): 42784-42794.
8 Dong W, He B, Qian H, et al. RAB26-dependent autophagy protects adherens junctional integrity in acute lung injury[J]. Autoph, 2018, 14(10): 1677-1692.
9 Tang ZH, Jiang XM, Guo X, et al. Characterization of Osimertinib(AZD9291)-resistant non-small cell lung cancer NCI-H1975/OSIR cell line[J]. Oncotarget,2016, 7(49): 81598-81610.
10 Ma CS, Lv QM, Zhang KR, et al. NRF2-GPX4/SOD2 axis imparts resistance to EGFR-tyrosine kinase inhibitors in non-small-cell lung cancer cells[J]. Acta Pharmacol Sin, 2021, 42(4): 613-623.
11 Zalaquett Z, Catherine Rita Hachem M, Kassis Y, et al. Acquired resistance mechanisms to osimertinib: The constant battle[J]. Cancer Treatment Rev, 2023, 116: 102557.
12 Niederst MJ, Hu H, Mulvey HE, et al. The Allelic context of the C797S mutation acquired upon treatment with third-generation EGFR inhibitors impacts sensitivity to subsequent treatment strategies[J]. Clin Cancer Res, 2015, 21(17): 3924-3933.
13 Ou SHI, Agarwal N, Ali SM. High MET amplification level as a resistance mechanism to osimertinib(AZD9291)in a patient that symptomatically responded to crizotinib treatment post-osimertinib progression[J]. Lung Cancer(Amsterdam, Netherlands), 2016, 98: 59-61.
14 Ku BM, Choi MK, Sun JM, et al. Acquired resistance to AZD9291 as an upfront treatment is dependent on ERK signaling in a preclinical model[J]. PloS One, 2018, 13(4): e0194730.
15 Xiu W, Zhang Q, Yu M, et al. Case Report: outcome of osimertinib treatment in lung adenocarcinoma patients with acquired KRAS mutations[J]. Front Oncol, 2021, 11: 630256.
16 Díaz-Serrano A, Gella P, Jiménez E, et al. Targeting EGFR in lung cancer: Current standards and developments[J]. Drugs, 2018, 78(9): 893-911.
17 Liu K, Chen X, Wu L, et al. ID1 mediates resistance to osimertinib in EGFR T790M-positive non-small cell lung cancer through epithelial-mesenchymal transition[J]. BMC Pulmon Med, 2021, 21(1): 163.
18 Weng CH, Chen LY, Lin YC, et al. Epithelial-mesenchymal transition(EMT)beyond EGFR mutations per se is a common mechanism for acquired resistance to EGFR TKI[J]. Oncogene, 2019, 38(4): 455-468.
19 Jin H, Tang Y, Yang L, et al. Rab GTPases: Central coordinators of membrane trafficking in cancer[J]. Front Cell Development Biol, 2021, 9: 648384.
20 Liu J, Zheng X, Wu X. The Rab GTPase in the heart: Pivotal roles in development and disease[J]. Life Sci, 2022, 306: 120806.
21 Kiral FR, Kohrs FE, Jin EJ, et al. Rab GTPases and membrane trafficking in?neurodegeneration[J]. Current Biol: CB, 2018, 28(8): R471-R486.
22 Zhang X, Huang TY, Yancey J, et al. Role of rab GTPases in alzheimer's disease[J]. ACS Chem Neurosci, 2019, 10(2): 828-838.
23 Liu N, Wu Z, Chen A, et al. SNRPB promotes the tumorigenic potential of NSCLC in part by regulating RAB26[J]. Cell Death Dis, 2019, 10(9): 667.
24 Ren H, Yang B, Li M, et al. RAB26 contributes to the progression of non-small cell lung cancer after being transcriptionally activated by SMAD3[J]. Bioengin, 2022, 13(4): 8064-8075.
25 Liu Q, Wang D, Xu Z, et al. Targeted delivery of rab26 siRNA with precisely tailored DNA prism for lung cancer therapy[J]. Chembiochem, 2019, 20(9): 1139-1144.
26 Zheng Y, Wu J, Chen H, et al. KLF4 targets RAB26 and decreases 5-FU resistance through inhibiting autophagy in colon cancer[J]. Cancer Biol Ther, 2023, 24(1): 2226353.
27 Liu H, Zhou Y, Qiu H, et al. Rab26 suppresses migration and invasion of breast cancer cells through mediating autophagic degradation of phosphorylated Src[J]. Cell Death Dis, 2021, 12(4): 284.
28 Sabharwal SS, Schumacker PT. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel?[J]. Nat Rev Cancer, 2014, 14(11): 709-721.
29 Chun KS, Kim DH, Surh YJ. Role of reductive versus oxidative stress in tumor progression and anticancer drug resistance[J]. Cells, 2021, 10(4): 758.
30 Zhang KR, Zhang YF, Lei HM, et al. Targeting AKR1B1 inhibits glutathione de novo synthesis to overcome acquired resistance to EGFR-targeted therapy in lung cancer[J]. Sci Translat Med, 2021, 13(614): eabg6428.
31 Meng Y, Lin W, Wang N, et al. Bazedoxifene-induced ROS promote mitochondrial dysfunction and enhance osimertinib sensitivity by inhibiting the p-STAT3/SOCS3 and KEAP1/NRF2 pathways in non-small cell lung cancer[J]. Free Rad Biol Med, 2023, 196: 65-80.
32 Wu D, Wang Y, Hu J, et al. Rab26 promotes macrophage phagocytosis through regulation of MFN2 trafficking to mitochondria [J]. FEBS J. 2023, 290(16):4023-4039.
33 Hennig P, Fenini G, Di Filippo M, et al. The pathways underlying the multiple roles of p62 in inflammation and cancer[J]. Biomed, 2021, 9(7): 707.
34 Baird L, Yamamoto M. The molecular mechanisms regulating the KEAP1-NRF2 pathway[J]. Mol Cell Biol, 2020, 40(13): e00099-20.
35 Zhu L, He S, Huang L, et al. Chaperone-mediated autophagy degrades Keap1 and promotes Nrf2-mediated antioxidative response[J]. Aging Cell, 2022, 21(6): e13616.
36 Ni Y, Liu J, Zeng L, et al. Natural product manoalide promotes EGFR-TKI sensitivity of lung cancer cells by KRAS-ERK pathway and mitochondrial Ca2+ overload-induced ferroptosis[J]. Front Pharmacol, 2023, 13: 1109822.

备注/Memo

备注/Memo:
基金项目: 重庆市自然科学基金面上项目(cstc2020jcyj-msxmX0096)
通信作者: 孙芬芬, Email: sunfenfen@tmmu.edu.cn
更新日期/Last Update: 2024-06-25