|本期目录/Table of Contents|

[1]朱佑君,付万垒,毛 杨,等.细胞外基质相关标志物与成纤维细胞在肺动脉高压发展中的意义[J].中华肺部疾病杂志,2024,(03):356-362.[doi:10.3877/cma.j.issn.1674-6902.2024.03.003 ]
 Zhu Youjun,Fu Wanlei,Mao Yang,et al.Significance of extracellular matrix associated markers and fibroblasts in the progression of pulmonary arterial hypertension[J].,2024,(03):356-362.[doi:10.3877/cma.j.issn.1674-6902.2024.03.003 ]
点击复制

细胞外基质相关标志物与成纤维细胞在肺动脉高压发展中的意义(PDF)

《中华肺部疾病杂志》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年03期
页码:
356-362
栏目:
论著
出版日期:
2024-06-25

文章信息/Info

Title:
Significance of extracellular matrix associated markers and fibroblasts in the progression of pulmonary arterial hypertension
作者:
朱佑君1付万垒2毛 杨3李德峰3
400037 重庆,陆军(第三)军医大学第二附属医院心内科1、病理科2、临床医学研究中心3
Author(s):
Zhu Youjun1 Fu Wanlei2 Mao Yang3 Li Defeng3.
1Department of Cardiology, Second Affiliated Hospital of Army Medical University, Chongqing 400037, China; 2Department of Pathology, Second Affiliated Hospital of Army Medical University, Chongqing 400037, China; 3Clinical Medical Research Center, Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
关键词:
肺动脉高压 差异表达基因 细胞拟时序 细胞通讯
Keywords:
Pulmonary arterial hypertension Differentially expressed genes Cell pseudotime Cell communication
分类号:
R563
DOI:
10.3877/cma.j.issn.1674-6902.2024.03.003
摘要:
目的 本文通过分析高通量基因表达及单细胞RNA测序数据,探讨肺动脉高压(pulmonaryarterial hypertension, PAH)患者组织中差异表达基因(differentially expressed genes, DEGs)及细胞间交流的特征,以揭示PAH的分子机制和细胞行为异质性。方法 从NCBI的GEO数据库下载基因表达数据集GSE244830和单细胞表达数据集GSE228644。使用limma包进行差异基因分析,clusterProfiler包进行功能富集分析。单细胞数据采用Seurat包和monocle包分析细胞分群和拟时序变化。利用CellChat包分析细胞间交流。所有分析在R语言环境下完成。结果 从GSE244830数据集中鉴定出81个显著的DEGs,其中70个在PAH组表现为上调,而11个则显示下调。明确PPI分析81个DEGs得到8个枢纽基因。富集结果显示差异基因主要涉及上皮细胞和内皮细胞的增殖等生物过程,参与调节糖蛋白的AGE-RAGE信号通路。单细胞细胞类型注释表明,16 430个细胞被划分为9个细胞类型,包括单核细胞、CD8+ T细胞、脂肪细胞、自然杀伤(natural killer cell, NK)细胞、内皮细胞、上皮细胞、成纤维细胞、造血干细胞和巨噬细胞。单细胞拟时序分析结果表明,在PAH进展过程中,多个基因被激活,涉及包括细胞黏附、细胞骨架稳定及细胞介导的免疫反应。细胞通讯结果显示,成纤维细胞与脂肪细胞是PAH发展过程中的主要通讯细胞,尤其在COLLAGEN信号传导方面。结论 细胞水平揭示PAH患者组织特异性的基因表达模式,为深入理解PAH的病理生理机制提供新的视角,有望为开发针对PAH治疗策略具有临床意义。
Abstract:
Objective This study aims to explore the characteristics of differentially expressed genes(DEGs)and intercellular communication in the tissues of patients with pulmonary arterial hypertension(PAH)by analyzing high-throughput gene expression and single-cell RNA sequencing data. The ultimate goal is to unveil the molecular mechanisms and cellular behavior heterogeneity associated with PAH. Methods Gene expression datasets GSE244830 and single-cell expression dataset GSE228644 were downloaded from the GEO databaseof NCBI. Differential gene analysis was carried out using the limma package, and functional enrichment analysis using the clusterProfiler package. Single-cell data were analyzed for cell clustering and pseudotime trajectories using the Seurat and monocle packages, respectively. Intercellular communication was assessed with the CellChat package. All analyses were performed in the R programming environment. Results From the GSE244830 dataset, 81 significant DEGs were identified, with 70 upregulated and 11 downregulated in the PAH group. Further PPI analysis identified 8 hub genes fromthe 81 DEGs. Enrichment results showed that the DEGs are primarily involved in biological processes such as proliferation of epithelial and endothelial cells and participate in the regulation of the glycoprotein-mediated AGE-RAGE signaling pathway. Single-cell type annotation revealed that 16,430 cells were classified into 9 cell types, including monocytes, CD8+ T cells, adipocytes, NK cells, endothelial cells, epithelial cells, fibroblasts, hematopoietic stem cells, and macrophages. The single-cell pseudotime analysis indicated activation of multiple genes during the progression of PAH, involving cellular adhesion, cytoskeletal stability, and cell-mediated immune response. The cell communication results highlighted that fibroblasts and adipocytes are the main communicative cells in the development of PAH, particularly in the COLLAGEN signaling pathway. Conclusion This study reveals tissue-specific gene expression patterns in PAH patients at the cellular level, providing new insights into the pathophysiological mechanisms of PAH, and holds potential clinical significance for developing targeted treatment strategies.

参考文献/References:

1 任成山, 卞士柱, 胡明冬. 肺动脉高压的成因及治疗新理念[J/CD]. 中华肺部疾病杂志(电子版), 2023, 16(1): 1-5.
2 Kovacs G, Dumitrescu D, Held M, et al. Definition, clinical classification and initial diagnosis of pulmonary hypertension: Updated recommendations from the Cologne Consensus Conference 2018[J]. Int J Cardiol, 2018, 272S: 11-19.
3 Paul MH. Pulmonary arterial hypertension[J]. N Engl J Med, 2021, 385(25): 2361-2376.
4 Eyries M, Montani D, Soubrier F, et al. EIF2AK4 mutations cause pulmonary veno-occlusive disease, a recessive form of pulmonary hypertension[J]. Nat Genet, 2014, 46(1): 65-69.
5 Wang T, Zheng X, Zeng HS, et al. Integrated bioinformatic analysis reveals YWHAB as a novel diagnostic biomarker for idiopathic pulmonary arterial hypertension[J]. J Cel Physiol, 2019, 234(5): 6449-6462.
6 Risbano MG, Meadows CA, Bull TM, et al. Altered immune phenotype in peripheral blood cells of patients with scleroderma-associated pulmonary hypertension[J].ClinTransl Sci, 2010, 3(5): 210-218.
7 Nasim MT, Ogo T, Machado RD, et al. Molecular genetic characterization of SMAD signaling molecules in pulmonary arterial hypertension[J]. Hum Mutat, 2011, 32(12): 1385-1389.
8 Ruopp NF, Cockrill BA. Diagnosis and treatment of pulmonary arterial hypertension: a review[J]. JAMA, 2022, 327(14): 1379-1391.
9 Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7): e47.
10 Yu G, Wang LG, He QY, et al. Cluster profiler: An R package for comparing biological themes among gene clusters[J].OMICS, 2012, 16(5): 284-287.
11 Satija R, Farrell JA, Regev A, et al. Spatial reconstruction of single-cell gene expression data[J]. Nat Biotechnol, 2015, 33(5): 495-502.
12 Aran D, Looney AP, Liu L, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage[J]. Nat Immunol, 2019, 20(2): 163-172.
13 谢锦程, 肖梦媛, 陈建英, 等. 肺动脉高压实验模型的研究进展[J]. 中国比较医学杂志, 2023, 33(9): 79-89.
14 陈晓毅, 尹雪霞, 刘 静, 等. 阻塞性睡眠呼吸暂停低通气综合征并发肺动脉高压的危险因素及预测分析[J/CD]. 中华肺部疾病杂志(电子版), 2024, 17(1): 41-45.
15 张惠芳, 方莲花, 杜冠华. 免疫炎症反应在肺动脉高压中作用的研究进展[J]. 中国药理学通报, 2015, 31(11): 1481-1484.
16 Cracowski JL, Chabot F, Labarère J, et al. Proinflammatory cytokine levels are linked to death in pulmonary arterial hypertension[J]. Eur Respir J, 2014, 43(3): 915-917.
17 马文德, 苏晓灵, 白玉婷. 巨噬细胞在肺动脉高压形成中的研究进展[J]. 心肺血管病杂志, 2024, 43(2): 207-210.
18 李菲菲, 黄钰钦, 陈若霞, 等. 肺动脉高压相关线粒体自噬生物标志物及其作用的分析与验证[J]. 广西医科大学学报, 2024, 41(3): 419-429.
19 Luna-López R, Ruiz Martín A, EscribanoSubías P. Pulmonary arterial hypertension[J]. Med Clin(Barc), 2022, 158(12): 622-629.
20 Barman SA, Fulton D. Adventitial fibroblast Nox4 expression and ROS signaling in pulmonary arterial hypertension[J]. Adv Exp Med Biol, 2017, 967: 1-11.
21 Tian L, Wu D, Dasgupta A, et al. Epigenetic metabolic reprogramming of right ventricular fibroblasts in pulmonary arterial hypertension: A pyruvate dehydrogenase kinase-dependent shift in mitochondrial metabolism promotes right ventricular fibrosis[J]. Circ Res, 2020, 126(12): 1723-1745.
22 Thenappan T, Ormiston ML, Archer SL, et al. Pulmonary arterial hypertension:pathogenesis and clinical management[J]. BMJ, 2018, 360: j5492.
23 Chen L, Li M, Shen M, et al. Bioinformatics exploration of potential common therapeutic targets for systemic and pulmonary arterial hypertension-induced myocardial hypertrophy[J]. Acta BiochimBiophys Sin(Shanghai), 2023, 55(5): 831-841.
24 Jiao YR, Wang W, Lei PC, et al. 5-HTT,BMPR2,EDN1,ENG,KCNA5 gene polymorphisms and susceptibility to pulmonary arterial hypertension: A meta-analysis[J]. Gene, 2019, 680: 34-42.
25 Zhang W, Zhu T, Wu W, et al. LOX-1 mediated phenotypic switching of pulmonary arterial smooth muscle cells contributes to hypoxic pulmonary hypertension[J]. Eur J Pharmacol, 2018, 818: 84-95.
26 Tam AYY, Horwell AL, Trinder SL, et al. Selective deletion of connective tissue growth factor attenuates experimentally-induced pulmonary fibrosis and pulmonary arterial hypertension[J]. Int J Biochem Cell Biol, 2021, 134: 105961.
27 Abid S, Marcos E, Parpaleix A, et al. CCR2/CCR5-mediated macrophage-smooth muscle cell crosstalk in pulmonary hypertension[J]. Eur Respir J, 2019, 54(4): 1802308.
28 Jiang CY, Wu LW, Liu YW, et al. Identification of ACKR4 as an immune checkpoint in pulmonary arterial hypertension[J]. Front Immunol, 2023, 14: 1153573.
29 Samokhin AO, Stephens T, Wertheim BM, et al. NEDD9 targets COL3A1 to promote endothelial fibrosis and pulmonary arterial hypertension[J]. Sci Transl Med, 2018, 10(445): eaap7294.
30 王 琼, 彭振辉, 王万卷, 等. RNAi对人类皮肤成纤维细胞COL1A1及COL3A1表达的影响[J]. 南方医科大学学报, 2008, 28(1): 1-6.
31 Ferrian S, Cao A, McCaffrey EF, et al. Single-cell imaging maps inflammatory cell subsets to pulmonary arterial hypertension vasculopathy[J]. Am J Respir Crit Care Med, 2024, 209(2): 206-218.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金资助项目(82002446)
通信作者: 李德峰, Email: Ldf201407@tmmu.edu.cn
更新日期/Last Update: 2024-06-25