|本期目录/Table of Contents|

[1]赵蒙蒙,黄 洁,余荣环,等.过表达小GTP酶Rab32抑制非小细胞肺癌细胞侵袭性生长[J].中华肺部疾病杂志,2024,(04):512-518.[doi:10.3877/cma.j.issn.1674-6902.2024.04.002 ]
 Zhao Mengmeng,Huang Jie,Yu Ronghuan,et al.Overexpression of the small GTPase Rab32 inhibits the invasive growth of non-small cell lung cancer cells[J].,2024,(04):512-518.[doi:10.3877/cma.j.issn.1674-6902.2024.04.002 ]
点击复制

过表达小GTP酶Rab32抑制非小细胞肺癌细胞侵袭性生长(PDF)

《中华肺部疾病杂志》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年04期
页码:
512-518
栏目:
论著
出版日期:
2024-08-25

文章信息/Info

Title:
Overexpression of the small GTPase Rab32 inhibits the invasive growth of non-small cell lung cancer cells
作者:
赵蒙蒙1黄 洁1余荣环1王葆青12
200031 上海,上海市徐汇区中心医院,复旦大学附属中山医院徐汇医院呼吸与危重症医学科1
200032 上海,复旦大学附属中山医院呼吸与危重症医学科2
Author(s):
Zhao Mengmeng1 Huang Jie1 Yu Ronghuan1 Wang Baoqing12.
1Department of Respiratory Medicine, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200031, China; 2Department Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
关键词:
非小细胞肺癌 Rab32 细胞增殖 细胞迁移 侵袭能力
Keywords:
Non-small cell lung cancer Rab32 Cell proliferation Cell migration Invasive capacity
分类号:
R734.2
DOI:
10.3877/cma.j.issn.1674-6902.2024.04.002
摘要:
目的 分析Rab32对非小细胞肺癌(non-small cell lung cancer, NSCLC)细胞增殖、迁移及侵袭的影响及作用机制; 方法 通过生物信息学判断NSCLC中Rab32的表达; 用qRT-PCR和Western blot检测NSCLC细胞中Rab32 mRNA和蛋白表达水平; 应用Rab32过表达慢病毒感染A549和H1299细胞,构建Rab32稳转A549和H1299细胞株为观察组,空载体慢病毒感染A549和H1299细胞后构建的为对照组; 利用CCK-8和集落形成实验判断Rab32对NSCLC细胞影响增殖能力; 通过划痕和Transwell实验检测Rab32对A549和H1299细胞迁移和侵袭能力的影响; 利用Western blot检测不同组细胞中EMT标志物(E-cadherin、N-cadherin和Vimentin)蛋白的表达水平变化。结果 通过生物信息学分析显示,肺腺癌(Lung adenocarcinoma, LUAD)和肺鳞癌(lung squamous cell carcinoma, LUSC)中Rab32的mRNA表达较对照组显著降低(P<0.05); qRT-PCR及Western blot结果表明A549、H1299和HCC827中Rab32 mRNA和蛋白表达水平显著低于正常人支气管上皮细胞Beas-2B,其中A549和H1299细胞中Rab32 mRNA和蛋白较Beas-2B下降显著。A549、H1299细胞中,观察组的Rab32 mRNA和蛋白表达水平显著高于空载体对照组(P<0.05)。CCK-8和集落形成实验结果表明观察组的细胞增殖和克隆能力较对照组显著下降(P<0.05); 划痕和Transwell实验结果提示观察组细胞的迁移和侵袭能力明显下降(P<0.05); Western blot结果显示观察组细胞的上皮表型标志物E-cadherin蛋白表达水平显著高于对照组,而间皮表型标志物N-cadherin和Vimentin表达较对照组明显升高(P<0.05)。结论 Rab32抑制NSCLC细胞的增殖、迁移和侵袭,可作为潜在临床治疗NSCLC患者新途径。
Abstract:
Objective To investigate the role and novel mechanism of Rab32 on the proliferation, migration, and invasion of non-small cell lung cancer(NSCLC)cells. Methods The expression of Rab32 in NSCLC was assessed using bioinformatics. The mRNA and protein expression levels of Rab32 in NSCLC cells were determined by quantitative real-time polymerase chain reaction(qRT-PCR)and Western blot analysis. Stable Rab32-overexpressing A549 and H1299 cell lines were constructed using a lentivirus system, with the overexpression group serving as the observation group. The effects of Rab32 on the proliferation of NSCLC cells were evaluated by CCK-8 and colony formation assays. The impact of Rab32 on the migration and invasion capabilities of A549 and H1299 cells was examined using scratch and Transwell assays. The expression levels of epithelial-mesenchymal transition(EMT)markers(E-cadherin, N-cadherin, and Vimentin)in different groups of cells were measured by Western blot. Results Bioinformatics analysis indicated that the mRNA expression of Rab32 was significantly reduced in lung adenocarcinoma(LUAD)and lung squamous cell carcinoma(LUSC)compared to the control group(P<0.05). qRT-PCR and Western blot results revealed that the mRNA and protein expression levels of Rab32 in A549, H1299, and HCC827 were significantly lower than those in normal human bronchial epithelial cells(Beas-2B), with more pronounced decreases in A549 and H1299 cells. In A549 and H1299 cells, the mRNA and protein expression levels of Rab32 in the observation group were significantly higher than those in the empty vector control group(P<0.05). The CCK-8 and colony formation assay results showed that the cell proliferation and cloning capacity of the observation group were significantly reduced compared to the control group(P<0.05). The scratch and Transwell assay results suggested a marked decrease in the migration and invasion capabilities of the observation group cells(P<0.05). Western blot analysis showed that the protein expression level of the epithelial phenotype marker E-cadherin in the observation group cells was significantly higher than that in the control group, while the expression of mesenchymal phenotype markers N-cadherin and Vimentin was markedly increased compared to the control group(P<0.05). Conclusion Rab32 inhibits the proliferation, migration, and invasion of NSCLC cells and may serve as a potential new avenue for the clinical treatment of NSCLC patients.

参考文献/References:

1 Bray F, Laversanne M, Sung H. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263.
2 Roy S Herbst, Daniel Morgensztern, Chris Boshoff. The biology and management of non-small cell lung cancer[J]. Nature, 2018, 553(7689): 446-454.
3 Kristina Drizyte-Miller, Jing Chen, Micah B Schott, et al. The small GTPase Rab32 resides on lysosomes to regulate mTORC1 signaling[J]. J Cell Sci, 2020, 133(11): jcs236661.
4 Pin Chen, Yanbing Lu, Binfeng He, et al. Rab32 promotes glioblastoma migration and invasion via regulation of ERK/Drp1-mediated mitochondrial fission[J]. Cell Death Dis, 2023, 14(3): 198.
5 Zheng He, Meng Tian, Xuan Fu. Reduced expression of miR-30c-5p promotes hepatocellular carcinoma progression by targeting RAB32[J]. Mol Ther Nucleic Acids, 2021, 26: 603-612.
6 Oksuz Z, Serin MS, Kaplan E, et al. Serum microRNAs; miR-30c-5p, miR-223-3p, miR-302c-3p and miR-17-5p could be used as novel non-invasive biomarkers for HCV-positive cirrhosis and hepatocellular carcinoma[J]. Mol Biol Rep, 2015,42(3): 713-720.
7 Saumya Srivastava, Atish Mohanty, Sharad Singhal, et al. Chemokines and NSCLC: Emerging role in prognosis, heterogeneity, and therapeutics[J]. Semin Cancer Biol, 2022, 86(Pt 2): 233-246.
8 Stephan Wilmes, Daniel Kümmel. Insights into the role of the membranes in Rab GTPase regulation[J]. Curr Opin Cell Biol, 2023, 83: 102177.
9 Mai KL Nguyen, Jaimy Jose, Mohamed Wahba. Linking late endosomal cholesterol with cancer progression and anticancer drug resistance[J]. Int J Mol Sci, 2022, 23(13): 7206.
10 I-Ying Kuo, Chih-Hsiung Hsieh, Chih-Peng Chang, et al. Recent advances in conventional and unconventional vesicular secretion pathways in the tumor microenvironment[J]. J Biomed Sci, 2022, 29(1): 56.
11 Priya D Gopal Krishnan, Emily Golden, Nathan J Pavlos, et al. Rab GTPases: emerging oncogenes and tumor suppressive regulators for the editing of survival pathways in cancer[J]. Cancers(Basel), 2020, 12(2): 259.
12 Aya Nishizawa, Yuto Maruta, Mitsunori Fukuda. Rab32/38-dependent and-independent transport of tyrosinase to melanosomes in B16-F1 melanoma cells[J]. Int J Mol Sci, 2022, 23(22): 14144.
13 Cuiling Zeng, Li Zhong, Wenqiang Liu. Targeting the lysosomal degradation of Rab22a-NeoF1 fusion protein for osteosarcoma lung metastasis[J]. Adv Sci(Weinh), 2023, 10(5): e2205483.
14 Huiying Liu, Yuxia Zhou, Wanjin Hong, et al. Rab26 suppresses migration and invasion of breast cancer cells through mediating autophagic degradation of phosphorylated Src[J]. Cell Death Dis, 2021, 12(4): 284.
15 陈 伟, 李 华, 唐心蔚, 等. Rab26对小细胞肺癌H446细胞增殖和迁移的影响[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(1): 43-48.
16 Yu-Chan Chang, Chien-Hsiu Li, Chi-Long Chen, et al. Overexpression of synaptic vesicle protein Rab GTPase 3C promotes vesicular exocytosis and drug resistance in colorectal cancer cells[J]. Mol Oncol, 2023, 17(3): 422-444.
17 Maria Sol Herrera-Cruz, Megan C. Yap, Nasser Tahbaz, et al. Rab32 uses its effector reticulon 3L to trigger autophagic degradation of mitochondria-associated membrane(MAM)proteins[J]. Biol Direct, 2021, 16: 22.
18 Vamshikrishna Malyla, Keshav Raj Paudel, Gabriele De Rubis, et al. Extracellular vesicles released from cancer cells promote tumorigenesis by inducing epithelial to mesenchymal transition via beta-catenin signaling[J]. Int J Mol Sci, 2023, 24(4): 3500.
19 Fengqiang Yu, Mingqiang Liang, Yu Huang, et al. Hypoxic tumor-derived exosomal miR-31-5p promotes lung adenocarcinoma metastasis by negatively regulating SATB2-reversed EMT and activating MEK/ERK signaling[J]. J Exp Clin Cancer Res, 2021, 40(1): 179.
20 Flora Guerra, Aurora Paiano, Giuseppe Gasparre, et al. Modulation of RAB7A protein expression determines resistance to cisplatin through late endocytic pathway impairment and extracellular vesicular secretion[J]. Cancers(Basel), 2019, 11(1): 52.
21 Hyun-Wook Lee, Cynthia C Jose, Suresh Cuddapah. Epithelial-mesenchymal transition: Insights into nickel-induced lung diseases[J]. Semin Cancer Biol, 2021, 11(76): 99-109.
22 Bing Liao, Jialing Wang, Hongliang Luo. LINK-A: unveiling its functional role and clinical significance in human tumors[J]. Front Cell Dev Biol, 2024, 12: 1354726.
23 Hang Yin, Lin Chen, Haiyang Zhang, et al. M6A RNA methylation-mediated RMRP stability renders proliferation and progression of non-small cell lung cancer through regulating TGFBR1/SMAD2/SMAD3 pathway[J]. Cell Death Differ, 2023, 30(3): 605-617.
24 Weijia Wang, Wenjun Liu, Yong Yuan, et al. Targeting CSC-related transcription factors by E3 ubiquitin ligases for cancer therapy[J]. Semin Cancer Biol, 2022, 87: 84-97.
25 张小彬, 陆云飞, 桂小龙, 等. Rab25基因下调snail表达抑制人乳腺癌MDA-MB-231细胞上皮-间充质转化能力的研究[J]. 中华内分泌外科杂志, 2023, 17(2): 166-169.
26 Meysam Moghbeli. PI3K/AKT pathway as a pivotal regulator of epithelial-mesenchymal transition in lung tumor cells[J]. Cancer Cell Int, 2024, 24(1): 165.
27 Parinya Samart, Gayathri Heenatigala Palliyage, Sudjit Luanpitpong,et al. Musashi-2 in cancer-associated fibroblasts promotes non-small cell lung cancer metastasis through paracrine IL-6-driven epithelial-mesenchymal transition[J]. Cell Biosci, 2023, 13(1): 205.
28 张声林, 蔡 浩, 戚利坤, 等. 下调RAB3C减低上皮间质转化抑制非小细胞肺癌细胞的侵袭和转移[J]. 现代肿瘤医学, 2020, 11(28): 1825-1828.
29 Yan Zhang, Min Zhou, Kun Li. MicroRNA-30 inhibits the growth of human ovarian cancer cells by suppressing RAB32 expression[J]. Int J Immunopathol Pharmacol, 2022, 36: 20587384211058642.
30 Libing Shen, Qili Shi, Wenyuan Wang. Double agents: genes with both oncogenic and tumor-suppressor functions[J]. Oncogenesis, 2018, 7(3): 25.

备注/Memo

备注/Memo:
基金项目: 上海市徐汇区卫生系统高峰学科建设项目(SHXHZDXK202312);
通信作者: 王葆青, Email: wang.baoqing@zs-hospital.sh.cn
更新日期/Last Update: 2024-08-25