|本期目录/Table of Contents|

[1]赵 静,范 晔,游雅婷,等.虚拟支气管镜导航联合径向超声支气管镜在周围型肺癌中的诊断意义[J].中华肺部疾病杂志,2024,(04):524-528.[doi:10.3877/cma.j.issn.1674-6902.2024.04.004]
 Zhao Jing,Fan Ye,You Yating,et al.Diagnostic value of ultrasound image features combined with virtual bronchoscopic navigation and radial endobronchial ultrasound in peripheral lung cancer[J].,2024,(04):524-528.[doi:10.3877/cma.j.issn.1674-6902.2024.04.004]
点击复制

虚拟支气管镜导航联合径向超声支气管镜在周围型肺癌中的诊断意义(PDF)

《中华肺部疾病杂志》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年04期
页码:
524-528
栏目:
出版日期:
2024-08-25

文章信息/Info

Title:
Diagnostic value of ultrasound image features combined with virtual bronchoscopic navigation and radial endobronchial ultrasound in peripheral lung cancer
作者:
赵 静1范 晔2游雅婷2陈 慧3王 静2张 静2
400037 重庆,陆军(第三)军医大学第二附属医院临床技能培训中心1、全军呼吸内科研究所·全军呼吸病研究重点实验室2、消化内科3
Author(s):
Zhao Jing1 Fan Ye2 You Yating2 Chen Hui3 Wang Jing2 Zhang Jing2.
1Department of Clinical Skills Training center, Xinqiao Hospital, Army Medical University, Chongqing 400037, China; 2Department of Respiratory Disease, Xinqiao Hospital, Army Medical University, Chongqing 400037, China; 3Department of Gastroenterology Xinqiao Hospital, Army Medical University, Chongqing 400037, China
关键词:
周围型肺癌 虚拟支气管镜导航 径向超声支气管镜 早期诊断
Keywords:
Peripheral lung cancer Virtual bronchoscopic navigation Radial endobronchial ultrasound Early diagnosis
分类号:
R734.2
DOI:
10.3877/cma.j.issn.1674-6902.2024.04.004
摘要:
目的 分析虚拟支气管镜导航(virtual bronchoscopic navigation, VBN)联合径向超声支气管镜(radial endobronchial ultrasound, R-EBUS)在周围型肺癌中的诊断意义。方法 选择2022年1月至2024年1月我院收治的行VBN+R-EBUS引导肺穿刺活检96例患者,采用χ2检验比较结节均质/非均质回声、边界特征、CT影像学诊断与组织病理诊断相关性,采用Logistic回归分析,绘制受试者工作特征曲线(receiver operating characteristic curve, ROC)曲线,分析R-EBUS超声图像特征在周围型肺癌中的诊断意义。结果 R-EBUS超声显示实性均质回声66例(68.75%),实性非均质回声30例(43.48%); 边界清楚57例(59.38%),边界欠清楚39例(40.62%)。术前经肺螺旋CT诊断为肺癌67例(69.79%),其他非肿瘤疾病29例(30.21%)。组织病理学诊断肺肿瘤58例(60.42%),其中腺癌39例(40.63%),鳞癌9例(9.38%),其他肿瘤10例(10.42%); 组织病理学诊断非肿瘤疾病38例(39.58%),其中炎症24例(25.00%),局灶肉芽肿性炎或结核6例(6.25%),其他非肿瘤疾病8例(8.33%)。均质回声及组织病理诊断为肺癌51例(53.13%)、非肺癌15例(15.63%),非均质回声组织病理学诊断为肺癌7例(7.29%),非肺癌23例(23.96%)。均质回声与肺癌组织病理诊断相关(P<0.001),回声诊断肺癌的灵敏度为87.93%,特异度为60.53%。边界欠清楚及组织病理诊断为肺癌24例(25.00%)、非肺癌34例(35.41%),边界清楚组织病理诊断为肺癌15例(15.63%),非肺癌23例(23.96%),边界特征与肺癌组织病理诊断不关联(P>0.05)。Logistic回归分析显超声回声、肺CT,以及超声回声联合肺CT三种检测方法与肺癌组织病理诊断有一致性(P<0.001),ROC曲线分析显示,超声回声AUC:0.7423,肺CT AUC:0.7945,超声回声联合肺CT AUC:0.8827。结论 R-EBUS超声图像中实性均质回声与肺癌组织病理诊断显著相关,R-EBUS联合CT影像学可提升肺癌诊断准确率。
Abstract:
Objective To evaluate the diagnostic value of virtual bronchoscopic navigation(VBN)combined with radial endobronchial ultrasound(R-EBUS)in peripheral lung cancer. Methods A total of 96 patients who underwent VBN+R-EBUS guided lung biopsy in our hospital from January 2022 to January 2024 were selected. Chi-square test was used to compare the correlation between homogeneous/heterogeneous nodule echo, boundary characteristics, CT diagnosis and pathological diagnosis. Logistic regression analysis and receiver operating characteristic curvecurve(ROC)curve were used. To investigate the diagnostic value of R-EBUS imaging features in peripheral lung cancer. Results Sixty-six cases(68.75%)showed homogeneous solid echogenicity, 30 cases(43.48%)showed heterogeneous solid echogenicity, 57 cases(59.38%)showed clear border, and 39 cases(40.62%)showed unclear border. 67 cases(69.79%)of lung cancer and 29 cases(30.21%)of other non-neoplastic diseases were diagnosed by spiral CT before operation. 58 cases(60.42%)of lung tumors were diagnosed by histopathology, including 39 cases(40.63%)of adenocarcinoma, 9 cases(9.38%)of squamous cell carcinoma and 10 cases(10.42%)of other tumors. There were 38 cases(39.58%)of non-tumor diseases diagnosed by histopathology, including 24 cases(25.00%)of inflammation, 6 cases(6.25%)of focal granulomatous inflammation or tuberculosis, and 8 cases(8.33%)of other non-tumor diseases. There were 51 cases of lung cancer(53.13%)and 15 cases of non-lung cancer(15.63%)with homogeneous echo and histopathologic diagnosis, 7 cases of lung cancer(7.29%)and 23 cases of non-lung cancer(23.96%)with heterogeneous echo.Homogeneous echo was correlated with pathological diagnosis of lung cancer(P<0.001). The sensitivity and specificity of echo diagnosis of lung cancer were 87.93% and 60.53%, respectively. Borderless and histopathologically diagnosed were lung cancer in 24 cases(25.00%)and non-lung cancer in 34 cases(35.41%). Borderless and histopathologically diagnosed were lung cancer in 15 cases(15.63%)and non-lung cancer in 23 cases(23.96%).There was no correlation between boundary features and pathological diagnosis of lung cancer(P>0.05). Logistic regression analysis showed that echo, CT and echo combined with CT detection were consistent with pathological diagnosis of lung cancer(P<0.001). ROC curve analysis showed that echo AUC:0.7423, CTAUC:0.7945, and echo combined with CTAUC:0.8827. Conclusion The solid homogeneous echo in R-EBUS image is significantly correlated with the pathological diagnosis of lung cancer. R-EBUS combined with CT can improve the diagnostic accuracy of lung cancer.

参考文献/References:

1 吴国明, 钱桂生. 非小细胞肺癌靶向治疗研究进展及新理念[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(4): 405-408.
2 Brett C Bade, Charles S Dela Cruz. Lung cancer 2020: Epidemiology, etiology, and prevention[J]. Clin Chest Med, 2020, 41(1): 1-24.
3 Lucile Pabst, Sébastien Lopes, Basil Bertrand, et al. Prognostic and predictive biomarkers in the Era of immunotherapy for lung cancer[J]. Int J Mol Sci, 2023, 24(8): 7577.
4 Akinori Hata, Takuya Hino, Masahiro Yanagawa, et al. Interstitial lung abnormalities at CT: Subtypes, clinical significance, and associations with lung cancer[J]. Radiographics, 2022, 42(7): 1925-1939.
5 Stefano Gasparini, Federico Mei, Martina Bonifazi, et al. Bronchoscopic diagnosis of peripheral lung lesions[J]. Curr Opin Pulm Med, 2022, 28(1): 31-36.
6 Andrew D Lerner, David Feller-Kopman. Bronchoscopic techniques used in the diagnosis and staging of lung cancer[J]. J Natl Compr Canc Netw, 2017, 15(5): 640-647.
7 Liam C-K, Lee P, Yu C-J, et al. The diagnosis of lung cancer in the era of interventional pulmonology[J]. Int J Tuberc Lung Dis, 2021, 25(1): 6-15.
8 Jennifer D Duke, Janani Reisenauer. Robotic bronchoscopy: potential in diagnosing and treating lung cancer[J]. Expert Rev Respir Med, 2023, 17(3): 213-221.
9 Yang Xia, Qin Li, Changgao Zhong, et al. Inheritance and innovation of the diagnosis of peripheral pulmonary lesions[J]. Ther Adv Chronic Dis, 2023, 14: 20406223221146723.
10 Lei Zhang, Hongxu Wu, Guiqi Wang. Endobronchial ultrasonography using a guide sheath technique for diagnosis of peripheral pulmonary lesions[J]. Endosc Ultrasound, 2017, 6(5): 292-299.
11 Tess Kramer, Jouke T Annema. Advanced bronchoscopic techniques for the diagnosis and treatment of peripheral lung cancer[J]. Lung Cancer, 2021, 161: 152-162.
12 Aristides J Armas Villalba, David E Ost. Bronchoscopic treatment of early-stage peripheral lung cancer[J]. Curr Opin Pulm Med, 2024, 30(4): 337-345.
13 Daniel P Steinfort, Felix JF Herth. Bronchoscopic treatments for early-stage peripheral lung cancer: Are we ready for prime time? [J]. Respirology, 2020, 25(9): 944-952.
14 Gao Y, Chen Y, Jiang Y, et al. Artificial intelligence algorithm-based feature extraction of computed tomography images and analysis of benign and malignant pulmonary nodules[J]. Comput Intell Neurosci, 2022, 2022: 5762623.
15 Tsukasa Ishiwata, Alexander Gregor, Terunaga Inage, et al. Bronchoscopic navigation and tissue diagnosis[J]. Gen Thorac Cardiovasc Surg, 2020, 68(7): 672-678.
16 Satish Kalanjeri, Anna Abbasi, Munish Luthra, et al. Invasive modalities for the diagnosis of peripheral lung nodules[J]. Expert Rev Respir Med, 2021, 15(6): 781-790.
17 Andrew D Lerner, David Feller-Kopman. Bronchoscopic techniques used in the diagnosis and staging of lung cancer[J]. J Natl Compr Canc Netw, 2017, 15(5): 640-647.
18 Stefano Gasparini, Federico Mei, Martina Bonifazi, et al. Bronchoscopic diagnosis of peripheral lung lesions[J]. Curr Opin Pulm Med, 2022, 28(1): 31-36.
19 Fumihiro Asano, Ralf Eberhardt, Felix JF Herth. Virtual bronchoscopic navigation for peripheral pulmonary lesions[J]. Respiration, 2014, 88(5): 430-440.
20 Christopher Gilbert, Jason Akulian, Ricardo O. Amador, et al. Novel bronchoscopic strategies for the diagnosis of peripheral lung lesions: present techniques and future directions[J]. Respirology, 2014, 19(5): 636-644.
21 Ramsy Abdelghani, Mohamed Omballi, David Abia-Trujillo, et al. Imaging modalities during navigational bronchoscopy[J]. Expert Rev Respir Med, 2024, 18(3-4): 175-188.
22 Liyan Bo, Congcong Li, Lei Pan, et al. Diagnosing a solitary pulmonary nodule using multiple bronchoscopic guided technologies: A prospective randomized study[J]. Lung Cancer, 2019, 129: 48-54.
23 Chun Hua Xu, Ji Wang Wang, Wei Wang, et al. The diagnosis value of endobronchial ultrasound transbronchial lung biopsy combined with rapid on-site evaluation in peripheral lung cancer[J]. Clin Respir J, 2020, 14(5): 447-452.
24 Noriaki Kurimoto, Teruomi Miyazawa, Seiji Okimasa, et al. Endobronchial ultrasonography using a guide sheath increases the ability to diagnose peripheral pulmonary lesions endoscopically[J]. Chest, 2004, 126(3): 959-965.
25 Lijie Ma, Yanfeng Fang, Tingxiu Zhang, et al. Comparison in efficacy and safety of forceps biopsy for peripheral lung lesions guided by endobronchial ultrasound-guided sheath(EBUS-GS)and electromagnetic navigation bronchoscopy combined with EBUS(ENB-EBUS)[J]. Am J Transl Res, 2020, 12(8): 4604-4611.
26 Soohyun Bae, Soyeoun Lim, Jong Joon Ahn, et al. Diagnosing peripheral lung lesions using endobronchial ultrasonography with guide sheath: A prospective registry study to assess the effect of virtual bronchoscopic navigation using a computed tomography workstation[J]. Medicine(Baltimore), 2020, 99(17): e19870.
27 Anant Jain, Adrish Sarkar, Shaikh Muhammad Noor Husnain, et al. Digital tomosynthesis: review of current literature and its impact on diagnostic bronchoscopy[J]. Diagnostics(Basel), 2023, 13(15): 2580.
28 Yilian Tang, Sen Tian, Hui Chen, et al. Transbronchial lung cryobiopsy for peripheral pulmonary lesions. A narrative review[J]. Pulmonology, 2023, S2531-0437(23)00163-0.
29 Yeji Han, Hyun Jung Kim, Kyoung Ae Kong, et al. Diagnosis of small pulmonary lesions by transbronchial lung biopsy with radial endobronchial ultrasound and virtual bronchoscopic navigation versus CT-guided transthoracic needle biopsy: A systematic review and meta-analysis[J]. PLoS One, 2018, 13(1): e0191590.
30 Samuel T Freyaldenhoven, Hisashi Tsukada. Robotics in the diagnosis and staging of lung cancer[J]. J Surg Oncol, 2023, 127(2): 258-261.
31 Qin Pei, Yanan Luo, Yiyu Chen, et al. Artificial intelligence in clinical applications for lung cancer: diagnosis, treatment and prognosis[J]. Clin Chem Lab Med, 2022, 60(12): 1974-1983.
32 Mitchell Chen, Susan J Copley, Patrizia Viola, et al. Radiomics and artificial intelligence for precision medicine in lung cancer treatment[J]. Semin Cancer Biol, 2023, 93:97-113.

备注/Memo

备注/Memo:
基金项目: 重庆市科卫联合医学科研项目(2023QNXM010)
通信作者: 王 静, Email: 282883495@qq.com
张 静, Email: 83728087@qq.com
更新日期/Last Update: 2024-08-25