1 马小雯, 范明伟, 杜 江. 锌指蛋白502在肺腺癌中的表达及作用机制[J]. 中国医科大学学报, 2023, 52(9): 798-804.
2 Liu L, Wang C, Li S, et al. ERO1L is a novel and potential biomarker in lung adenocarcinoma and shapes the immune-suppressive tumor microenvironment[J]. Front Immunol, 2021, 12: 677169.
3 Sun H, Liu SY, Zhou JY, et al. Specific TP53 subtype as biomarker for immune checkpoint inhibitors in lung adenocarcinoma[J]. E Bio Medicine, 2020, 60: 102990.
4 李慧婷, 莫冉冉, 宋 鹏, 等. 非小细胞肺癌免疫检查点抑制剂治疗进展[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(3): 382-386.
5 Mori K, Pradere B, Moschini M, et al. First-line immune-checkpoint inhibitor combination therapy for chemotherapy-eligible patients with metastatic urothelial carcinoma: A systematic review and meta-analysis[J]. Eur J Cancer, 2021, 151: 35-48.
6 Palmer AC, Izar B, Hwangbo H, et al. Predictable clinical benefits without evidence of synergy in trials of combination therapies with immune-checkpoint inhibitors[J]. Clin Cancer Res, 2022, 28(2): 368-377.
7 Honrubia-Peris B, Garde-Noguera J, García-Sánchez J, et al. Soluble biomarkers with prognostic and predictive value in advanced non-small cell lung cancer treated with immunotherapy[J]. Cancers, 2021, 13(17): 4280-4295.
8 Lin ZF, Qin LX, Chen JH. Biomarkers for response to immunotherapy in hepatobiliary malignancies[J]. Hepatobiliary Pancreat Dis Int, 2022, 21(5): 413-419.
9 Yoon SJ, Lee CB, Chae SU, et al. The comprehensive “Omics” approach from metabolomics to advanced omics for development of immune checkpoint inhibitors: Potential strategies for next generation of cancer immunotherapy[J]. Int J Mol Sci, 2021, 22(13): 6932-6956.
10 Bai H, Duan J, Li C, et al. EPHA mutation as a predictor of immunotherapeutic efficacy in lung adenocarcinoma[J]. J Immunother Cancer, 2020, 8(2): e001315.
11 张海涛, 王 春, 张映铭, 等. 非小细胞肺癌患者EGFR突变率及与临床病理关系和TKI靶向治疗效果[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(2): 175-180.
12 Anderton M, van der Meulen E, Blumenthal MJ, et al. The role of the Eph receptor family in tumorigenesis[J]. Cancers(Basel), 2021, 13(2): 206.
13 Zhang J, Zhang Z, Song W, et al. EPHA5 mutation impairs natural killer cell-mediated cytotoxicity against non-small lung cancer cells and promotes cancer cell migration and invasion[J]. Mol Cell Probes, 2020, 52: 101566.
14 Chalmers ZR, Connelly CF, Fabrizio D, et al. Analysis of 100, 000 human cancer genomes reveals the landscape of tumor mutational burden[J]. Genome Med, 2017, 9(1): 34.
15 Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data[J]. Bioinformatics, 2016, 32(18): 2847-2849.
16 Hu F, Peng J, Niu Y, et al. Clinical predictors of treatment efficacy and a prognostic nomogram in patients with lung adenocarcinoma receiving immune checkpoint inhibitors: a retrospective study[J]. J Thorac Dis, 2022, 14(10): 4096-4112.
17 Jiang T, Li X, Wang J, et al. Mutational landscape of cfDNA identifies distinct molecular features associated with therapeutic response to first-line platinum-based doublet chemotherapy in patients with advanced NSCLC[J]. Theranostics, 2017, 7(19): 4753-4762.
18 Nishino M, Wang X, Ricciuti B, et al. Advanced non-small-cell lung cancer treated with first-line pembrolizumab plus chemotherapy: tumor response dynamics as a marker for survival[J]. Eur Radiol, 2023, 33(10): 7284-7293.
19 Song Q, Zhou R, Shu F, et al. Cuproptosis scoring system to predict the clinical outcome and immune response in bladder cancer[J]. Front Immunol, 2022, 13: 958368-958383.
20 Sha S, Si L, Wu X, et al. Prognostic analysis of cuproptosis-related gene in triple-negative breast cancer[J]. Front Immunol, 2022, 13: 922780-922800.
21 Jiao X, Wei X, Li S, et al. A genomic mutation signature predicts the clinical outcomes of immunotherapy and characterizes immunophenotypes in gastrointestinal cancer[J]. NPJ Precis Oncol, 2021, 5(1): 36.
22 Pan YH, Zhang JX, Chen X, et al. Predictive value of the TP53/PIK3CA/ATM mutation classifier for patients with bladder cancer responding to immune checkpoint inhibitor therapy[J]. Front Immunol, 2021, 12: 643282.
23 Sahoo AR, Buck M. Structural and functional insights into the transmembrane domain association of Eph receptors[J]. Int J Mol Sci, 2021, 22(16): 8593-8605.
24 Kaczmarek R, Gajdzis P, Gajdzis M. Eph receptors and Ephrins in retinal diseases[J]. Int J Mol Sci, 2021, 22(12): 6207-6224.
25 Anderton M, van der Meulen E, Blumenthal MJ, et al. The role of the Eph receptor family in tumorigenesis[J]. Cancers, 2021, 13(2): 206-220.