|本期目录/Table of Contents|

[1]熊廷伟,陶,阳,等.分析MPVR技术在诊断肺磨玻璃结节浸润性中的临床意义[J].中华肺部疾病杂志,2024,(04):575-579.[doi:10.3877/cma.j.issn.1674-6902.2024.04.013 ]
 Xiong Tingwei,Tao Yang,Li Wangjia,et al.Exploring the clinical value of multiplanar volume rendering technology in diagnosising the invasiveness of pulmonary ground glass nodules[J].,2024,(04):575-579.[doi:10.3877/cma.j.issn.1674-6902.2024.04.013 ]
点击复制

分析MPVR技术在诊断肺磨玻璃结节浸润性中的临床意义(PDF)

《中华肺部疾病杂志》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年04期
页码:
575-579
栏目:
论著
出版日期:
2024-08-25

文章信息/Info

Title:
Exploring the clinical value of multiplanar volume rendering technology in diagnosising the invasiveness of pulmonary ground glass nodules
作者:
熊廷伟李王佳付彬洁褚志刚吕发金
400016 重庆,重庆医科大学附属第一医院放射科
Author(s):
Xiong Tingwei Tao Yang Li Wangjia Fu Binjie Chu Zhigang Lv Fajin.
Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
关键词:
肺磨玻璃结节 多平面容积再现技术 计算机断层扫描 原位癌微浸润/浸润性腺癌
Keywords:
Ground glass nodules Multiplanar volume rendering Computed tomography Carcinoma in situ microinvasive/invasive adenocarcinomalung
分类号:
R734.2
DOI:
10.3877/cma.j.issn.1674-6902.2024.04.013
摘要:
目的 分析多平面容积再现技术(multiplanar volume rendering, MPVR)在肺磨玻璃结节浸润性诊断中的临床意义。方法 选择2020年1月至2023年5月我院收治因肺磨玻璃结节(ground glass nodule, GGN)接受手术切除患者1032例,其中303例(29.36%),共325枚组织经病理学证实的GGN,包括114枚原位腺癌(adenocarcinoma in situ, AIS)、104枚微浸润性腺癌(minimally invasive adenocarcinoma, MIA)和107枚浸润性腺癌(invasive adenocarcinoma, IAC)。根据MPVR表现将GGN内部表现分为Ⅰ~Ⅴ型、外部形态表现分为Ⅰ~Ⅲ型。微浸润性腺癌及浸润性腺癌定义为浸润性病变(invasive lesions, ILs),根据MPVR上GGN内孤立性结节最大径与GGN三维(three-dimensional, 3D)最大径比值,采用受试者工作特征(receiver operating characteristic, ROC)分析鉴别浸润性病变和浸润性腺癌的截断值。结果 AIS内部表现以Ⅰ型(75.44%)为主; MIA内部表现以Ⅴ型(50.00%)为主; IAC内部表现以Ⅳ型为主(57.01%),三者差异有统计学意义(P<0.001)。内部表现为Ⅱ型的GGN,AIS与IAC间具有统计学差异(P<0.001),MIA与AIS、MIA与IAC间无统计学意义(P>0.05); 无内部表现为Ⅲ型的GGN,AIS与MIA及IAC间有统计学差异(P<0.001),MIA与IAC间无统计学差异(P>0.05)。AIS外部MPVR表现以Ⅰ型(86.84%)、MIA外部MPVR表现以Ⅱ型(58.65%)、IAC外部MPVR表现以Ⅲ型(68.22%)为主,组间比较有统计学意义(P<0.001)。鉴别ILs和IACs时,MPVR上GGN内孤立结节最大径与GGN3D长径比值的截断值分别为0.5[曲线下面积(AUC):0.816,敏感性:71.93,特异性:85.71,(P<0.001)]和0.508(AUC:0.883,敏感性:87.5,特异性:79.03,P<0.001)。结论 MPVR技术给序GGN临床诊断带来依据,对GGN浸润性诊断中有重要作用,临床实践具有意义。
Abstract:
Objective Exploring the clinical significance of Multiplanar volume rendering(MPVR)technology in diagnosising the invasiveness of pulmonary ground glass nodules. Methods A retrospective analysis was conducted on 325 neoplastic GGNs, 114 adenocarcinoma in situ(AIS), 104 minimally invasive adenocarcinoma(MIA), and 107 invasive adenocarcinoma(IAC)in 303 patients between January 2020 and May 2023. The internal performance of GGN were divided into Ⅰ-Ⅴ types, and the external morphology were divided into Ⅰ-Ⅲ types according to the multiplanar volume rendering(MPVR)performance. Define MIA and IAC as invasive lesions(ILs), and based on the ratio of the maximum diameter of solitary nodules in GGN on MPVR to the 3D maximum diameter of GGN, and then the cutoff value for distinguishing invasive lesions and invasive adenocarcinoma were obtained via ROC analysis. Results The internal manifestation of AIS, MIA, IAC on MPVR were mainly type Ⅰ, type Ⅴ and type Ⅳ, and statistical significance(P<0.001)were found between the three groups. there also were statistically significant difference between AIS and IAC in type Ⅱ, and between AIS and MIA, IAC in type Ⅲ(each P<0.001 ). The external manifestation of AIS, MIA, IAC on MPVR were mainly type Ⅰ, type Ⅱ, and type Ⅲ, and statistical significance(P<0.001)were found between the three groups. For distinguishing invasive lesions and invasive adenocarcinoma, the cutoff value for the ratio of the maximum diameter of solitary nodules in GGN on MPVR to the 3D maximum diameter of GGN was 0.5(AUC: 0.816, sensitivity: 71.93, specificity: 85.71, P<0.001), and 0.508(AUC: 0.883, sensitivity: 87.5, specificity: 79.03, P<0.001). Conclusion MPVR technology has important role in evaluating the invasiveness of pulmonary ground glass nodules and has guiding significance for clinical practice.

参考文献/References:

1 李华娟, 唐英俊, 王赛妮, 等. 肺结节临床与CT影像学特征分析及良恶性预测模型构建[J/CD]. 中华肺部疾病杂志(电子版), 2023, 16(3): 318-323.
2 Lee JH, Park CM, Lee SM, et al. Persistent pulmonary subsolid nodules with solid portions of 5 mm or smaller: Their natural course and predictors of interval growth[J]. Eur Radiol, 2016, 26(6): 1529-1537.
3 Hsu WC, Huang PC, Pan KT, et al. Predictors of invasive adenocarcinomas among pure ground-glass nodules less than 2 cm in diameter[J]. Cancers(Basel), 2021, 13(16): 3945.
4 Borghesi A, Michelini S, Golemi S, et al. What's new on quantitative CT analysis as a tool to predict growth in persistent pulmonary subsolid nodules? A literature review[J]. Diagnostics(Basel), 2020, 10(2): 55.
5 Nicholson AG, Tsao MS, Beasley MB, et al. The 2021 WHO classification of lung tumors: Impact of advances since 2015[J]. J Thorac Oncol, 2022, 17(3): 362-387.
6 Qi L, Lu W, Yang L, et al. Qualitative and quantitative imaging features of pulmonary subsolid nodules: Differentiating invasive adenocarcinoma from minimally invasive adenocarcinoma and preinvasive lesions[J]. J ThoracDis, 2019, 11: 4835-4846.
7 Behera M, Owonikoko TK, Gal AA, et al. Lung adenocarcinoma staging using the 2011 IASLC/ATS/ERS classification: A pooled analysis of adenocarcinoma in situ and minimally invasive adenocarcinoma[J]. Clin Lung Cancer, 2016, 17: e57-64.
8 Hammer MM, Hatabu H. Subsolid pulmonary nodules: Controversy and perspective[J]. Eur J Radiol Open, 2020, 7: 100267.
9 Qi LL, Wu BT, Tang W, et al. Long-term follow-up of persistent pulmonary pure ground-glass nodules with deep learning-assisted nodule segmentation[J]. Eur Radiol, 2020, 30(2): 744-755.
10 Shi L, Zhao J, Peng X, et al. CT-based radiomics for differentiating invasive adenocarcinomas from indolent lung adenocarcinomas appearing as ground-glass nodules: Asystematic review[J]. Eur J Radiol, 2021,144: 109956.
11 Hammer MM, Palazzo LL, Eckel AL, et al. A decision analysis of follow-up and treatment algorithms for nonsolid pulmonary nodules[J]. Radiology, 2019, 290(2): 506-513.
12 Kou J, Gu X, Kang L. Correlation analysis of computed tomography features and pathological types of multifocal ground-glass nodular lung adenocarcinoma[J]. Comput Math Methods Med, 2022, 2022: 7267036.
13 Li X, Zhang W, Yu Y, et al. CT features and quantitative analysis of subsolid nodule lung adenocarcinoma for pathological classification prediction[J]. BMC Cancer, 2020, 20(1): 60.
14 Fang W, Zhang G, Yu Y, et al. Identification of pathological subtypes of early lung adenocarcinoma based on artificial intelligence parameters and CT signs[J]. Biosci Rep, 2022, 42(1): BSR20212416.
15 Kou J, Gu X, Kang L. Correlation analysis of computed tomography features and pathological types of multifocal ground-glass nodular lung adenocarcinoma[J]. Comput math methods med, 2022, 2022: 7267036.
16 Wang H, Weng Q, Hui J, et al. Value of TSCT features for differentiating preinvasive and minimally invasive adenocarcinoma from invasive adenocarcinoma presenting as subsolid nodules smaller than 3 cm[J]. Acad radiol, 2020, 27(3): 395-403.
17 Gao J, Qi Q, Li H, et al. Artificial-intelligence-based computed tomography histogram analysis predicting tumor invasiveness of lung adenocarcinomas manifesting as radiological part-solid nodules[J]. Front Oncol, 2023, 13: 1096453.
18 Lee JH, Kim TH, Lee S, et al. High versus low attenuation thresholds to determine the solid component of ground-glass opacity nodules[J]. PLoS One, 2018, 13(10): e0205490.
19 Li WJ, Lv FJ, Tan YW, et al. Benign and malignant pulmonary part-solid nodules: differentiation via thin-section computed tomography[J]. Quant Imaging Med Surg, 2022, 12(1): 699-710.
20 Lee HW, Jin KN, Lee JK, et al. Long-term follow-up of ground-glass nodules after 5 years of stability[J]. J Thorac Oncol, 2019, 14(8): 1370-1377.
21 Gao C, Li J, Wu L, et al. The natural growth of subsolid nodules predicted by quantitative initial CT features: A systematic review[J]. Front Oncol, 2020, 10: 318.
22 He S, Chen C, Wang Z, et al. The use of the mean computed-tomography value to predict the invasiveness of ground-glass nodules: A meta-analysis[J]. Asian J Surg, 2023, 46(2): 677-682.
23 Zhang H, Wang D, Li W, et al. Artificial intelligence system-based histogram analysis of computed tomography features to predict tumor invasiveness of ground-glass nodules[J]. Quant Imaging Med Surg, 2023, 13(9): 5783-5795.

备注/Memo

备注/Memo:
基金项目: 重庆市技术创新与应用发展专项重点项目(CSTC2021jscx-ksbN0030)
重庆市科卫联合医学科研重点项目(2022ZDXM006)
通信作者: 吕发金, Email: fajinlv@163.com
更新日期/Last Update: 2024-08-25