1 Global cancer burden growing, amidst mounting need for services.[J]. Saudi Med J, 2024, 45(3): 326-327.
2 Han B, Zheng R, Zeng H, et al. Cancer incidence and mortality in China, 2022[J]. J Nat Cancer Center, 2024, 4(1): 47-53.
3 Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J, 2021, 134(7): 783-791.
4 《早期肺癌诊断中国专家共识(2023年版)》发布[J]. 中华医学信息导报, 2023, 38(3): 10-11.
5 Xu K, Lv Y, Chen T, et al. Evaluation of the novel international association for the study of lung cancer grading system in adenocarcinoma with spread through air space.[J]. Translat Lung Cancer Res, 2024, 13(8): 1862-1876.
6 田舜彧, 李晓雪. 低剂量螺旋CT筛查肺癌及肺结节的研究进展[J]. 医疗装备, 2024, 37(14): 161-164.
7 中华医学会肿瘤学分会. 中华医学会肺癌临床诊疗指南(2024版)[J]. 中华肿瘤杂志, 2024, 46(9): 805-843.
8 中华医学会肿瘤学分会, 中华医学会杂志社. 中华医学会肺癌临床诊疗指南(2022版)[J]. 中华肿瘤杂志, 2022, 44(6): 457-490.
9 Sarah H, Pranav J, Yousaf H, et al. Utility of FDG PET/CT for assessment of lung nodules identified during low dose computed tomography screening.[J]. BMC Med Imag, 2020, 20(1): 69-70.
10 杨雪玲, 于海鹏, 司同国. 胸部肿瘤经皮穿刺活检中国专家共识(2020版)[J]. 中华介入放射学电子杂志, 2021, 9(2): 117-126.
11 刘 娜, 赵正凯, 邹佳瑜, 等. 基于人工智能的胸部CT肺结节检出及良恶性诊断效能评估[J]. CT理论与应用研究, 2021, 30(6): 709-715.
12 Beibei J, Nianyun L, Xiaomeng S, et al. Deep learning reconstruction shows better lung nodule detection for ultra-low-dose chest ct.[J]. Radiology, 2022, 303(1): 202-212.
13 Shubham D, Annappa B, A. M P. Recent advancements in deep learning based lung cancer detection: A systematic review[J]. Engineer Applicat Artif Intell, 2022, 116(105490): 1-15.
14 Akitoshi S, Daiju U, Antoine C, et al. Deep learning-based algorithm for lung cancer detection on chest radiographs using the segmentation method[J]. Scientific Reports, 2022, 12(1): 1-11.
15 Ueda D, Shimazaki A, Miki Y. Technical and clinical overview of deep learning in radiology[J]. Jpn J Radiol, 2019, 37(1): 15-33.
16 Ou WC, Polat D, Dogan BE. Deep learning in breast radiology: current progress and future directions[J]. Eur Radiol, 2021, 31(7): 4872-4885.
17 Saba L, Biswas M, Kuppili V, et al. The present and future of deep learning in radiology[J]. Eur J Radiol, 2019, 114: 14-24.
18 刘 莹, 杨 硕. 基于改进UNet网络的室内运动目标阴影分割[J]. 计算机系统应用, 2022, 31(12): 412-419.
19 蒋文斌, 彭 晶, 叶阁焰. 深度学习自适应学习率算法研究[J]. 华中科技大学学报(自然科学版), 2019, 47(5): 79-83.
20 Yang L, Qianqian Y, Haitao Y, et al. Automated segmentation of vertebral cortex with 3D U-Net-based deep convolutional neural network[J]. Front Bioengineer Biotechnol, 2022, 10: 1-13.
21 Jing X, Haojie R, Shenzhou C, et al. An improved faster R-CNN algorithm for assisted detection of lung nodules[J]. Comput Biol Med, 2022, 153: 1-12.
22 Hui Z, Yanjun P, Yanfei G. Pulmonary nodules detection based on multi-scale attention networks[J]. Scientific Reports, 2022, 12(1): 1-14.
23 Yue Z, Zhongyang W, Xinyao L, et al. Pulmonary Nodule Detection Based on Multiscale Feature Fusion[J]. Computat Mathemat Meth Med, 2022, 2022: 1-11.
24 Hou X, Wu M, Chen J, et al. Establishment and verification of a prediction model based on clinical characteristics and computed tomography radiomics parameters for distinguishing benign and malignant pulmonary nodules.[J]. J Thorac Dis, 2024, 16(3): 1-12.
25 Minmini S, Anupama C, Abjasree S, et al. Radiomics as a non-invasive adjunct to Chest CT in distinguishing benign and malignant lung nodules[J]. Scient Reports, 2023, 13(1): 1-14.
26 Shi Z, Zhang X, Jiang T. Study progress of radiomics in precision medicine for lung cancer[J]. Chin J Lung Cancer, 2019, 22(6): 933-939.
27 王 璐, 洪群英. 肺结节诊治中国专家共识(2018年版)解读[J]. 中国实用内科杂志, 2019, 39(05): 440-442.
28 Daungsupawong H, Wiwanitkit V. Radiomics and clinical data for the diagnosis of incidental pulmonary nodules and lung cancer screening: correspondence[J]. Archivos de Bronconeumol, 2024, 60(10): 1-3.
29 Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology[J]. Nature Reviews Cancer, 2018, 18(8): 500-510.
30 Coelho LP. How artificial intelligence is shaping medical imaging technology: a survey of innovations and applications[J]. Bioengineering, 2023, 10(12): 1-21.
31 吴绯红, 赵煌旋, 杨 帆, 等. 医学影像+人工智能的发展、现状与未来[J]. 临床放射学杂志, 2022, 41(4): 764-767.
32 倪 炯, 王培军. 医学影像人工智能的现状与未来[J]. 中华医学杂志, 2021, 101(7): 455-457.
33 范卫杰, 张 冬. 影像组学及深度学习在肺结节良恶性鉴别诊断中的新理念[J/CD]. 中华肺部疾病杂志(电子版), 2021, 14(5): 549-553.
34 曹 宇, 邢素霞, 逄键梁, 等. 基于改进的VGG-16卷积神经网络的肺结节检测[J]. 中国医学物理学杂志, 2020, 37(7): 940-944.
35 Hui Y, Jinqiu L, Lixin Z, et al. Design of lung nodules segmentation and recognition algorithm based on deep learning[J]. BMC Bioinformatics, 2021, 22(16): 1-12.
36 杨 愉, 谭雨豪, 王丽嘉. 改进的机器学习模型在肺结节良恶性分类中的研究[J]. 计算机与数字工程, 2024, 52(7): 2227-2232.