|本期目录/Table of Contents|

[1]栾强强,刘东利,杜延玲,等.循环miR-486-5p、miR-148a-3和miR-744-5p与OSA风险分层和免疫监测的关系[J].中华肺部疾病杂志,2024,(06):882-887.[doi:10.3877/cma.j.issn.1674-6902.2024.06.006
]

 Luan Qiangqiang,Liu Dongli,Du Yanling,et al.Relationship of circulating miR-486-5p, miR-148a-3 and miR-744-5p with risk stratification and immune monitoring of OSA[J].,2024,(06):882-887.[doi:10.3877/cma.j.issn.1674-6902.2024.06.006
]
点击复制

循环miR-486-5p、miR-148a-3和miR-744-5p与OSA风险分层和免疫监测的关系(PDF)

《中华肺部疾病杂志》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年06期
页码:
882-887
栏目:
论著
出版日期:
2024-12-25

文章信息/Info

Title:
Relationship of circulating miR-486-5p, miR-148a-3 and miR-744-5p with risk stratification and immune monitoring of OSA
作者:
栾强强刘东利杜延玲折艳涛
716000 延安,延安大学附属医院呼吸与危重症医学科
Author(s):
Luan Qiangqiang Liu Dongli Du Yanling She Yantao.
Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Yan'an University, Yan'an 716000, China
关键词:
睡眠呼吸暂停阻塞性 miR-486-5p miR-148a-3 miR-744-5p 免疫监测
Keywords:
Sleep apnea obstructive miR-486-5p miR-148a-3 miR-744-5p Immune surveillance
分类号:
R563
DOI:
10.3877/cma.j.issn.1674-6902.2024.06.006
摘要:
目的 分析循环miR-486-5p、miR-148a-3和miR-744-5p与阻塞性睡眠呼吸暂停(obstructive sleep apnea, OSA)风险分层和免疫监测的关系。方法 选择2021年5月至2022年5月我院收治的45例OSA患者,根据呼吸暂停低通气指数(apnea and hypopnea index, AHI)分为轻度OSA组11例、中度OSA组11例、重度OSA组23例。采用流式细胞术检测全血T细胞,逆转录-定量聚合酶链反应分析血浆miR-486-5p、miR-148a-3和miR-744-5p。分析循环miR-486-5p、miR-148a-3和miR-744-5p与OSA风险分层的关系。结果 重度OSA组微觉醒指数13.60(3.20,32.65)、SpO2<90%总持续时间27.00(17.25,46.25)min高于轻度OSA组0.00(0.00,0.25)、14.60(8.00,21.60)min中度OSA组0.30(0.05,1.15)、10.20(9.85,16.80)min,重度OSA组平均SpO2(91.10±4.07)%、CD4+/CD8+ T淋巴细胞比值(1.11±0.26)低于轻度OSA组(95.82±1.25)%、(1.51±0.56),中度OSA组(94.73±1.35)%、(1.43±0.54)(P<0.05)。重度OSA组的血浆miR-486-5p(0.85±0.41)、miR-148a-3(0.53±0.28)低于轻度OSA组miR-486-5p(1.35±0.56)、miR-148a-3(1.03±0.32)及中度OSA组miR-486-5p(1.31±0.40)、miR-148a-3(1.06±0.17)(P<0.05); 重度OSA组血浆miR-744-5p(2.39±1.01)高于轻度OSA组miR-744-5p(1.51±0.83)及中度OSA组miR-744-5p(1.59±0.81)(P<0.05)。Pearson相关分析显示,血浆miR-486-5p(r=0.354,P=0.017)、miR-148a-3(r=0.232,P=0.029)表达与CD4+/CD8+ T淋巴细胞比值呈正相关。血浆miR-486-5p、miR-148a-3和miR-744-5p表达联合鉴别OSA诊断,受试者工作特征曲线(receiver operating characteristic, ROC)下面积为0.978(95%CI:0.883~0.999),灵敏度及特异度分别为86.96%、95.45%。结论 血浆miR-486-5p、miR-148a-3p、miR-744-5p与OSA疾病严重程度相关,可辅助OSA疾病风险分层。
Abstract:
Objective To analyze the relationship between circulating miR-486-5p, miR-148a-3, miR-744-5p and obstructive sleep apnea(OSA)risk stratification and immune monitoring. Methods All of 45 OSA patients admitted to our hospital from May 2021 to May 2022 were selected and divided into mild OSA group(11 cases), moderate OSA group(11 cases)and severe OSA group(23 cases)according to apnea and hypopnea index(AHI). Whole blood T cells were detected by flow cytometry, plasma miR-486-5p, miR-148a-3 and miR-744-5p were analyzed by reverse transcription-quantitative polymerase chain reaction. The relationship between circulating miR-486-5p, miR-148a-3, miR-744-5p and OSA risk stratification was analyzed. Results Microarousal index 13.60(3.20, 32.65), SpO2<90%, total duration 27.00(17.25, 46.25)min in severe OSA group were higher than those in mild OSA group 0.00(0.00, 0.25), 14.60(8.00), 21.60)min moderate OSA group 0.30(0.05, 1.15), 10.20(9.85, 16.80)min, The average SpO2(91.10±4.07)% and CD4+/CD8+ T lymphocyte ratio(1.11±0.26)in severe OSA group were lower than those in mild OSA group(95.82±1.25)% and(1.51±0.56). Moderate OSA group(94.73±1.35)%,(1.43±0.54)(P<0.05). The plasma miR-486-5p(0.85±0.41)and miR-148a-3(0.53±0.28)in severe OSA group were lower than those in mild OSA group(1.35±0.56), miR-148a-3(1.03±0.32)and moderate OSA group(1.31±0.40), miR-148a-3(1.06±0.17)(P<0.05); The plasma miR-744-5p(2.39±1.01)in severe OSA group was higher than that in mild OSA group(1.51±0.83)and moderate OSA group(1.59±0.81)(P<0.05). Pearson correlation analysis showed that the expression of miR-486-5p(r=0.354, P=0.017)and miR-148a-3(r=0.232, P=0.029)in plasma was positively correlated with the ratio of CD4+/CD8+ T lymphocytes. The combined expression of miR-486-5p, miR-148a-3, and miR-744-5p in plasma was superior to the identification of severe OSA alone, and the area under the receiver operating characteristic(ROC)was 0.978(95%CI: 0.883-0.999), the sensitivity and specificity were 86.96% and 95.45%, respectively. Conclusion Plasma miR-486-5p, miR-148a-3p and miR-744-5p are correlated with the severity of OSA disease, and can assist in the risk stratification of OSA disease.

参考文献/References:

1 Thornton JD, Dudley KA, Saeed GJ, et al. Differences in symptoms and severity of obstructive sleep apnea between black and white patients[J]. Ann Am Thorac Soc, 2022, 19(2): 272-278.
2 王耕桐, 冯喜英, 刘洪千, 等. 阻塞性睡眠呼吸暂停低通气综合征相关血清学的研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2022, 15(1): 112-115.
3 Abbasi A, Gupta SS, Sabharwal N, et al. A comprehensive review of obstructive sleep apnea[J]. Sleep Sci, 2021, 14(2): 142.
4 李鸿光, 李彦如, 郜 飞, 等. 头位变化对阻塞性睡眠呼吸暂停低通气综合征严重程度的影响[J]. 中国耳鼻咽喉头颈外科, 2022, 29(10): 658-661.
5 Gunta SP, Jakulla RS, Ubaid A, et al. Obstructive sleep apnea and cardiovascular diseases: sad realities and untold truths regarding care of patients in 2022[J]. Cardiovasc Ther, 2022, 2022: 6006127.
6 宋 岩, 刘海玲, 查世乾, 等. 经皮电刺激治疗阻塞性睡眠呼吸暂停疗效的meta分析[J]. 中国康复医学杂志, 2023, 38(6): 821-826.
7 Bozzini MF, Di Francesco RC, Soster LA. Clinical and anatomical characteristics associated with obstructive sleep apnea severity in children[J]. Clinics(Sao Paulo), 2022, 77: 100131.
8 Xu Y, Ou Q, Cheng Y, et al. Comparative study of a wearable intelligent sleep monitor and polysomnography monitor for the diagnosis of obstructive sleep apnea[J]. Sleep Breath, 2023, 27(1): 205-212.
9 Mo J, Zeng C, Li W, Song W, Xu P. Manuscript title: A 4-miRNAs serum panel for obstructive sleep apnea syndrome screening[J]. Nat Sci Sleep, 2022, 14: 2055-2064.
10 Vakil M, Park S, Broder A. The complex associations between obstructive sleep apnea and auto-immune disorders: A review[J]. Med Hypotheses, 2018, 110: 138-143.
11 Kapur VK, Auckley DH, Chowdhuri S, et al. Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an american academy of sleep medicine clinical practice guideline[J]. J Clin Sleep Med, 2017, 13(3): 479-504.
12 Ma R, Liang Z, Shi X, et al. Exosomal miR-486-5p derived from human placental microvascular endothelial cells regulates proliferation and invasion of trophoblasts via targeting IGF1[J]. Hum Cell, 2021, 34(5): 1310-1323.
13 陈 琳, 欧阳若芸, 杨 悦, 等. 阻塞性睡眠呼吸暂停与甘油三酯葡萄糖指数的相关性[J]. 中国现代医学杂志, 2023, 33(12): 65-71.
14 Lee JJ, Sundar KM. Evaluation and management of adults with obstructive sleep apnea syndrome[J]. Lung, 2021, 199(2): 87-101.
15 Hung CJ, Kang BH, Lin YS, et al. Comparison of a home sleep test with in-laboratory polysomnography in the diagnosis of obstructive sleep apnea syndrome[J]. J Chin Med Assoc, 2022, 85(7): 788-792.
16 Cederberg KLJ, Hanif U, Peris Sempere V, et al. Proteomic biomarkers of the apnea hypopnea index and obstructive sleep apnea: insights into the pathophysiology of presence, severity, and treatment response[J]. Int J Mol Sci, 2022, 23(14): 7983.
17 张丽萍, 赵显超, 程金湘, 等. 阻塞性睡眠呼吸暂停不同症状亚型患者血浆蛋白质组学分析[J]. 中风与神经疾病杂志, 2023, 40(3): 195-201.
18 Siyanbade J, Abdulrazak B, Sadek I. Unobtrusive monitoring of sleep cycles: a technical review[J]. BioMedInformatics, 2022, 2(1): 204-216.
19 Moriondo G, Soccio P, Tondo P, et al. Obstructive sleep apnea: a look towards micro-RNAs as biomarkers of the future[J]. Biology(Basel), 2022, 12(1): 66.
20 Moriondo G, Soccio P, Tondo P, et al. Obstructive sleep apnea: A look towards micro-RNAs as biomarkers of the future[J]. Biology, 2022, 12(1): 66-83.
21 Zapater A, Santamaria-Martos F, Targa A, et al. Canonical pathways associated with blood pressure response to sleep apnea treatment: a post hoc analysis[J]. Respiration, 2021, 100(4): 298-307.
22 Zhao H, Yang H, Geng C, et al. Elevated IgE promotes cardiac fibrosis by suppressing miR-486a-5p[J]. Theranostics, 2021, 11(15): 7600-7615.
23 Zhu B, Liu W, Xu Q, et al. MicroRNA-486-5p functions as a diagnostic marker for carotid artery stenosis and prevents endothelial dysfunction through inhibiting inflammation and oxidative stress[J]. Bioengineered, 2022, 13(4): 8667-8675.
24 Huang F, Zhao JL, Wang L, et al. miR-148a-3p mediates notch signaling to promote the differentiation and M1 activation of macrophages[J]. Front Immunol, 2017, 8: 1327.
25 Tian S, Zhou X, Zhang M, et al. Mesenchymal stem cell-derived exosomes protect against liver fibrosis via delivering miR-148a to target KLF6/STAT3 pathway in macrophages[J]. Stem Cell Res Ther, 2022, 13(1): 330-349.
26 Wang K, Huang XT, Miao YP, et al. MiR-148a-3p attenuates apoptosis and inflammation by targeting CNTN4 in atherosclerosis[J]. Ann Transl Med, 2022, 10(22): 1201.
27 Zhang Z, Wang C. Immune status of children with obstructive sleep apnea/hypopnea syndrome[J]. Pak J Med Sci, 2017, 33(1): 195-199.
28 赵洪焕, 韩素桂, 陈艳梅, 等. 非小细胞肺癌患者miR-744-5p、血浆巨噬细胞抑制因子-1与临床病理特征的关系及对预后的预测价值研究[J]. 中国肿瘤外科杂志, 2022, 14(4): 332-336.
29 Petkova V, Marinova D, Kyurkchiyan S, et al. MiRNA expression profiling in adenocarcinoma and squamous cell lung carcinoma reveals both common and specific deregulated microRNAs[J]. Medicine, 2022, 101(33): e30027-e30039.
30 Liang H, Li L, Zhu S, et al. MicroRNA-744-5p suppresses tumorigenesis and metastasis of osteosarcoma through the p38 mitogen-activated protein kinases pathway by targeting transforming growth factor-beta 1[J]. Bioengineered, 2022, 13(5): 12309-12325.

备注/Memo

备注/Memo:
基金项目: 陕西省重点研发计划项目(2018YBXM-SF-12-1)
通信作者: 折艳涛, Email: 532951549@qq.com
更新日期/Last Update: 2024-12-25