|本期目录/Table of Contents|

[1]刘 岩,赵沛妍,田 琳,等.新型OX40抗体激动剂对NSCLC人源化小鼠模型的抑制作用及机制分析[J].中华肺部疾病杂志,2024,(06):901-906.[doi:10.3877/cma.j.issn.1674-6902.2024.06.009
]

 Liu Yan,Zhao Peiyan,Tian Lin,et al.Anti-tumor activity and mechanism of the novel OX40 antibody agonist in humanized mouse NSCLC model[J].,2024,(06):901-906.[doi:10.3877/cma.j.issn.1674-6902.2024.06.009
]
点击复制

新型OX40抗体激动剂对NSCLC人源化小鼠模型的抑制作用及机制分析(PDF)

《中华肺部疾病杂志》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年06期
页码:
901-906
栏目:
论著
出版日期:
2024-12-25

文章信息/Info

Title:
Anti-tumor activity and mechanism of the novel OX40 antibody agonist in humanized mouse NSCLC model
作者:
刘 岩1赵沛妍1田 琳1崔贺然2狄 娜2李 慧1程 颖13
130012 长春,吉林省肿瘤医院肿瘤转化医学实验室1
130012 长春,吉林省肿瘤医院生物样本库2
130012 长春,吉林省肿瘤医院胸部肿瘤内科3
Author(s):
Liu Yan1 Zhao Peiyan1 Tian Lin1 Cui Heran2 Di Na2 Li Hui1 Cheng Ying13.
1Medical Oncology Translational research lab, Jilin Cancer Hospital, Changchun 130012, China; 2 Biobank, Jilin Cancer Hospital, Changchun 130012, China; 3Department of Medical Thoracic Oncology, Jilin Cancer Hospital, Changchun 130012, China
关键词:
非小细胞肺癌 人源化小鼠 肿瘤坏死因子受体超家族4 抗体激动剂 转录组测序
Keywords:
Non-small cell lung cancer Humanized mouse Tumor necrosis factor receptor superfamily member 4 ES102 Transcriptome sequencing
分类号:
R734.2
DOI:
10.3877/cma.j.issn.1674-6902.2024.06.009
摘要:
目的 分析肿瘤坏死因子受体超家族4(tumor necrosis factor receptor superfamily member 4)(OX40)抗体激动剂(ES102)对小细胞肺癌(non-small cell lung cancer, NSCLC)人源化OX40小鼠模型的抑制作用和机制。方法 使用流式细胞术检测小鼠Lewis肺癌细胞(Lewis lung cancer cells, LLC)中CD44表达; 分别构建OX40人源化小鼠NSCLC荷瘤模型,溶媒对照组、不同剂量ES102组和结肠癌荷瘤模型,阳性溶媒对照组和阳性对照组,判断每组中ES102的抑瘤水平; 采用ELISA检测血清中干扰素-γ(interferon-γ, IFN-γ)和白介素-17(interleukin-17, IL-17); 蛋白质印迹法(Western blot)检测PI3K、NFAT、CD44、NapsinA和SYN蛋白表达; RNA转录组测序检测免疫浸润细胞表达。结果 LLC细胞中CD44阳性率99.58%,NapsinA蛋白低表达,提示LLC鼠源肺癌细胞株具有NSCLC特性。人源化OX40小鼠NSCLC模型中,ES102对NSCLC抑瘤能力无显著差异,MC38阳性对照组中注射ES102的第11天、第14天、第18天和第21天,ES102抑瘤能力与阳性溶媒对照组相比增强(P=0.0004,t=5.712; P<0.0001,t=9.368; P<0.0001,t=10.64; P<0.0001,t=13.37)。人源化小鼠血浆IL-17的含量在不同样本中表达差异显著(F=7.703,P=0.0004); 阳性对照组中IL-17分泌含量(58.24±18.11)pg/ml分别高于ES102(2 mg/ml)组(21.87±11.74)pg/ml,ES102(5 mg/ml)组(18.49±10.17)pg/ml和ES102(10 mg/ml)组(20.47±10.52)pg/ml(P<0.05); NSCLC ES102(10 mg/ml)组中IFN-γ含量高于对照组、ES102(2 mg/ml)组和ES102(5 mg/ml)组(P<0.05)。PI3K在阳性对照组中未见表达,在未处理组和ES102实验组(2 μg/kg~10 μg/kg)中高表达(P<0.05)。NFAT作为活化型T细胞的核因子,表达趋势与PI3K一致,组间差异无统计学意义(P>0.05)。转录组测序检测NSCLC和阳性对照组小鼠肿瘤组织,转录组测序和反卷积分析显示,Tregs细胞浸润比例为(1.95±0.02)%,低于阳性对照组中Tregs细胞浸润比例(7.2±0.03)%(P<0.05)。结论 ES102对NSCLC人源化小鼠模型疗效低于结肠癌,疗效差异与微环境中IL-17分泌降低及调节性T细胞浸润有关。
Abstract:
Objective To explore the efficacy and mechanism of OX40 antibody agonist(ES102)in humanized OX40 mouse NSCLC model. Methods Mouse Lewis lung cancer cells were detected using flow cytometry(Lewis lung cancer cells, CD44 expression in LLC); OX40 humanized mouse NSCLC tumor-bearing model(vehicle control group, ES102 treatment group at different doses)and colon cancer tumor-bearing model(positive vehicle control group and positive control group)were constructed respectively, To evaluate the tumor suppressive level of ES102 in different groups; Serum interferon- γ was measured by ELISA(interferon- γ, IFN- γ)and interleukin-17(interleukin-17, IL-17)secretory level; Expression of PI3K, NFAT, CD44, NapsinA and SYN by western blot(Western blot); The expression of the immune-infiltrating cells was determined by RNA transcriptome sequencing. Results The CD44 positive rate in LLC cells showed 99.58% and low expression of NapsinA protein, suggesting that LLC murine-derived lung cancer cell lines had NSCLC properties. In the humanized OX40 mouse NSCLC model, ES102 inhibited NSCLC, but on Day 11, Day 14, Day 18, and Day 21 in the positive vehicle control(P=0.0004, t=5.712; P<0.0001, t=9.368; P<0.0001, t=10.364; P<0.0001, t=13.37). The content of plasma IL-17 in humanized mice was significantly differently expressed between different samples(F=7.703, P=0.0004); The secretion content of IL-17 in the positive control group(58.24±18.11)pg/ml than the ES102(2 mg/ml)group(21.87±11.74)pg/ml, The ES102(5 mg/ml)group(18.49±10.17)pg/ml and the ES102(10 mg/ml)group(20.47±10.52)pg/ml(P<0.05); Higher IFN- γ in NSCLC ES102(10 mg/ml)than the control, ES102(2 mg/ml)and ES102(5 mg/ml)(P<0.05). PI3K expression was not seen in the positive control group and was highly expressed in the untreated group and the ES102 experimental group(2 μg/kg to 10 μg/kg)(P<0.05). As a nuclear factor in activated T cells, NFAT was expressed in a trend consistent with PI3K, without a statistically significant difference between the groups(P>0.05). After transcriptome sequencing of NSCLC and positive control mice, further transcriptome sequencing and deconvolution analysis showed that the proportion of Tregs cells infiltrated was(1.95±0.02)%, which was lower than that of Tregs cells infiltrated in the positive control group(7.2±0.03)%(P<0.05). Conclusion The efficacy of ES102 in humanized NSCLC mice is lower than colon cancer, and the difference may be related to the decreased secretion of IL-17 and the infiltration of Tregs cells in the microenvironment.

参考文献/References:

1 郑荣寿, 陈 茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2024, 46(3): 221-231.
2 吴国明, 钱桂生. 非小细胞肺癌靶向治疗研究进展及新理念[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(4): 405-408.
3 孟芸畅, 许 可, 宋 勇. 新辅助免疫治疗在可切除非小细胞肺癌中的研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2023, 16(5): 734-738.
4 Sathish G, Monavarshini LK, Sundaram K, et al. Immunotherapy for lung cancer[J]. Pathol Res Pract, 2024, 254: 155104.
5 Lahiri A, Maji A, Potdar PD, et al. Lung cancer immunotherapy: progress, pitfalls, and promises[J]. Mol Cancer, 2023, 22(1): 40.
6 Swart M, Verbrugge I, Beltman JB. Combination approaches with immune-checkpoint blockade in cancer therapy[J]. Front Oncol, 2016, 6: 233.
7 Sharma P, Allison JP. The future of immune checkpoint therapy[J]. Science, 2015, 348(6230): 56-61.
8 Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point[J]. Nature, 2017, 541(7637): 321-330.
9 Dostert C, Grusdat M, Letellier E, et al. The TNF family of ligands and receptors: Communication modules in the immune system and beyond[J]. Physiol Rev, 2019, 99(1): 115-160.
10 Lu X. OX40 and OX40L interaction in Cancer[J]. Curr Med Chem, 2021, 28(28): 5659-5673.
11 Buchan SL, Rogel A, Al-Shamkhani A. The immunobiology of CD27 and OX40 and their potential as targets for cancer immunotherapy[J]. Blood, 2018, 131(1): 39-48.
12 Thapa B, Kato S, Nishizaki D, et al. OX40/OX40 ligand and its role in precision immune oncology[J]. Cancer Metastasis Rev, 2024, 43(3): 1001-1013.
13 Xu Y, Yu Q. E-cadherin negatively regulates CD44-hyaluronan interaction and CD44-mediated tumor invasion and branching morphogenesis[J]. J Biol Chem, 2003, 278(10): 8661-8668.
14 Diab A, Hamid O, Thompson JA, et al. A phase I, open-label, dose-escalation study of the OX40 agonist ivuxolimab in patients with locally advanced or metastatic cancers[J]. Clin Cancer Res, 2022, 28(1): 71-83.
15 Davis EJ, Martin-Liberal J, Kristeleit R, et al. First-in-human phase Ⅰ/Ⅱ, open-label study of the anti-OX40 agonist INCAGN01949 in patients with advanced solid tumors[J]. J Immunother Cancer, 2022, 10(10): e004235.
16 Kuang Z, Jing H, Wu Z, et al. Development and characterization of a novel anti-OX40 antibody for potent immune activation[J]. Cancer Immunol Immunother, 2020, 69(6): 939-950.
17 Buchan SL, Rogel A, Alshamkhani A. The immunobiology of CD27 and OX40 and their potential as targets for cancer immunotherapy[J]. Blood, 2017, 131(1): 39-48.
18 Aspeslagh S, Postel-Vinay S, Rusakiewicz S, et al. Rationale for anti-OX40 cancer immunotherapy[J]. Eur J Cancer, 2016, 52: 50-66.
19 Webb GJ, Hirschfield GM, Lane PJ. OX40, OX40L and autoimmunity: A comprehensive review[J]. Clin Rev Allergy Immunol, 2016, 50(3): 312-332.
20 Lin Y, Song Y, Zhang Y, et al. NFAT signaling dysregulation in cancer: Emerging roles in cancer stem cells[J]. Biomed Pharmacother, 2023, 165: 115167.
21 Lv YW, Chen Y, Lv HT, et al. Kawasaki disease OX40-OX40L axis acts as an upstream regulator of NFAT signaling pathway[J]. Pediatr Res, 2019, 85(6): 835-840.
22 Zhou Z, Lin L, An Y, et al. The combination immunotherapy of TLR9 agonist and OX40 agonist via intratumoural injection for hepatocellular carcinoma[J]. J Hepatocell Carcinoma, 2021, 8: 529-543.
23 Iriki H, Takahashi H, Amagai M. Diverse role of OX40 on T cells as a therapeutic target for skin diseases[J]. J Invest Dermatol, 2023, 143(4): 545-553.
24 Yan LH, Liu XL, Mo SS, et al. OX40 as a novel target for the reversal of immune escape in colorectal cancer[J]. Am J Transl Res, 2021, 13(3): 923-934.
25 Alvim RG, Georgala P, Nogueira L, et al. Combined OX40 agonist and PD-1 inhibitor immunotherapy improves the efficacy of vascular targeted photodynamic therapy in a urothelial tumor model[J]. Molecules, 2021, 26(12): 3744.
26 Ruby CE, Yates MA, Hirschhorn-Cymerman D, et al. Cutting Edge: OX40 agonists can drive regulatory T cell expansion if the cytokine milieu is right[J]. J Immunol, 2009, 183(8): 4853-4857.
27 Imianowski CJ, Kuo P, Whiteside SK, et al. IFNγ production by functionally reprogrammed tregs promotes antitumor efficacy of OX40/CD137 bispecific agonist therapy[J]. Cancer Res Commun, 2024, 4(8): 2045-2057.
28 Kitamura N, Murata S, Ueki T, et al. OX40 costimulation can abrogate Foxp3+ regulatory T cell-mediated suppression of antitumor immunity[J]. Int J Cancer, 2009, 125(3): 630-638.
29 Weinberg AD, Morris NP, Kovacsovics-Bankowski M, et al. Science gone translational: the OX40 agonist story[J]. Immunol Rev, 2011, 244(1): 218-231.
30 Polesso F, Sarker M, Weinberg AD, et al. OX40 agonist tumor immunotherapy does not impact regulatory T cell suppressive function[J]. J Immunol, 2019, 203(7): 2011-2019.
31 Curti BD, Kovacsovics-Bankowski M, Morris N, et al. OX40 is a potent immune-stimulating target in late-stage cancer patients[J]. Cancer Res, 2013, 73(24): 7189-7198.
32 Jensen SM, Maston LD, Gough MJ, et al. Signaling through OX40 enhances antitumor immunity[J]. Semin Oncol, 2010, 37(5): 524-532.
33 Nuebling T, Schumacher CE, Hofmann M, et al. The immune checkpoint modulator OX40 and its ligand OX40L in NK-cell immunosurveillance and acute myeloid leukemia[J]. Cancer Immunol Res, 2018, 6(2): 209-221.
34 Shibahara I, Saito R, Zhang R, et al. OX40 ligand expressed in glioblastoma modulates adaptive immunity depending on the microenvironment: A clue for successful immunotherapy[J]. Mol Cancer, 2015, 14: 41.
35 Weinberg AD, Morris NP, Kovacsovics-Bankowski M, et al. Science gone translational: the OX40 agonist story[J]. Immunol Rev, 2011, 244(1): 218-231.

备注/Memo

备注/Memo:
基金项目: 吉林省科技厅基础研究专项(202002063JC)
吉林省卫健委项目(2021JC094)
通信作者: 李 慧, Email: 181966963@qq.com
程 颖, Email: chengying@csco.org.cn
更新日期/Last Update: 2024-12-25