1 郑荣寿, 陈 茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2024, 46(3): 221-231.
2 吴国明, 钱桂生. 非小细胞肺癌靶向治疗研究进展及新理念[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(4): 405-408.
3 孟芸畅, 许 可, 宋 勇. 新辅助免疫治疗在可切除非小细胞肺癌中的研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2023, 16(5): 734-738.
4 Sathish G, Monavarshini LK, Sundaram K, et al. Immunotherapy for lung cancer[J]. Pathol Res Pract, 2024, 254: 155104.
5 Lahiri A, Maji A, Potdar PD, et al. Lung cancer immunotherapy: progress, pitfalls, and promises[J]. Mol Cancer, 2023, 22(1): 40.
6 Swart M, Verbrugge I, Beltman JB. Combination approaches with immune-checkpoint blockade in cancer therapy[J]. Front Oncol, 2016, 6: 233.
7 Sharma P, Allison JP. The future of immune checkpoint therapy[J]. Science, 2015, 348(6230): 56-61.
8 Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point[J]. Nature, 2017, 541(7637): 321-330.
9 Dostert C, Grusdat M, Letellier E, et al. The TNF family of ligands and receptors: Communication modules in the immune system and beyond[J]. Physiol Rev, 2019, 99(1): 115-160.
10 Lu X. OX40 and OX40L interaction in Cancer[J]. Curr Med Chem, 2021, 28(28): 5659-5673.
11 Buchan SL, Rogel A, Al-Shamkhani A. The immunobiology of CD27 and OX40 and their potential as targets for cancer immunotherapy[J]. Blood, 2018, 131(1): 39-48.
12 Thapa B, Kato S, Nishizaki D, et al. OX40/OX40 ligand and its role in precision immune oncology[J]. Cancer Metastasis Rev, 2024, 43(3): 1001-1013.
13 Xu Y, Yu Q. E-cadherin negatively regulates CD44-hyaluronan interaction and CD44-mediated tumor invasion and branching morphogenesis[J]. J Biol Chem, 2003, 278(10): 8661-8668.
14 Diab A, Hamid O, Thompson JA, et al. A phase I, open-label, dose-escalation study of the OX40 agonist ivuxolimab in patients with locally advanced or metastatic cancers[J]. Clin Cancer Res, 2022, 28(1): 71-83.
15 Davis EJ, Martin-Liberal J, Kristeleit R, et al. First-in-human phase Ⅰ/Ⅱ, open-label study of the anti-OX40 agonist INCAGN01949 in patients with advanced solid tumors[J]. J Immunother Cancer, 2022, 10(10): e004235.
16 Kuang Z, Jing H, Wu Z, et al. Development and characterization of a novel anti-OX40 antibody for potent immune activation[J]. Cancer Immunol Immunother, 2020, 69(6): 939-950.
17 Buchan SL, Rogel A, Alshamkhani A. The immunobiology of CD27 and OX40 and their potential as targets for cancer immunotherapy[J]. Blood, 2017, 131(1): 39-48.
18 Aspeslagh S, Postel-Vinay S, Rusakiewicz S, et al. Rationale for anti-OX40 cancer immunotherapy[J]. Eur J Cancer, 2016, 52: 50-66.
19 Webb GJ, Hirschfield GM, Lane PJ. OX40, OX40L and autoimmunity: A comprehensive review[J]. Clin Rev Allergy Immunol, 2016, 50(3): 312-332.
20 Lin Y, Song Y, Zhang Y, et al. NFAT signaling dysregulation in cancer: Emerging roles in cancer stem cells[J]. Biomed Pharmacother, 2023, 165: 115167.
21 Lv YW, Chen Y, Lv HT, et al. Kawasaki disease OX40-OX40L axis acts as an upstream regulator of NFAT signaling pathway[J]. Pediatr Res, 2019, 85(6): 835-840.
22 Zhou Z, Lin L, An Y, et al. The combination immunotherapy of TLR9 agonist and OX40 agonist via intratumoural injection for hepatocellular carcinoma[J]. J Hepatocell Carcinoma, 2021, 8: 529-543.
23 Iriki H, Takahashi H, Amagai M. Diverse role of OX40 on T cells as a therapeutic target for skin diseases[J]. J Invest Dermatol, 2023, 143(4): 545-553.
24 Yan LH, Liu XL, Mo SS, et al. OX40 as a novel target for the reversal of immune escape in colorectal cancer[J]. Am J Transl Res, 2021, 13(3): 923-934.
25 Alvim RG, Georgala P, Nogueira L, et al. Combined OX40 agonist and PD-1 inhibitor immunotherapy improves the efficacy of vascular targeted photodynamic therapy in a urothelial tumor model[J]. Molecules, 2021, 26(12): 3744.
26 Ruby CE, Yates MA, Hirschhorn-Cymerman D, et al. Cutting Edge: OX40 agonists can drive regulatory T cell expansion if the cytokine milieu is right[J]. J Immunol, 2009, 183(8): 4853-4857.
27 Imianowski CJ, Kuo P, Whiteside SK, et al. IFNγ production by functionally reprogrammed tregs promotes antitumor efficacy of OX40/CD137 bispecific agonist therapy[J]. Cancer Res Commun, 2024, 4(8): 2045-2057.
28 Kitamura N, Murata S, Ueki T, et al. OX40 costimulation can abrogate Foxp3+ regulatory T cell-mediated suppression of antitumor immunity[J]. Int J Cancer, 2009, 125(3): 630-638.
29 Weinberg AD, Morris NP, Kovacsovics-Bankowski M, et al. Science gone translational: the OX40 agonist story[J]. Immunol Rev, 2011, 244(1): 218-231.
30 Polesso F, Sarker M, Weinberg AD, et al. OX40 agonist tumor immunotherapy does not impact regulatory T cell suppressive function[J]. J Immunol, 2019, 203(7): 2011-2019.
31 Curti BD, Kovacsovics-Bankowski M, Morris N, et al. OX40 is a potent immune-stimulating target in late-stage cancer patients[J]. Cancer Res, 2013, 73(24): 7189-7198.
32 Jensen SM, Maston LD, Gough MJ, et al. Signaling through OX40 enhances antitumor immunity[J]. Semin Oncol, 2010, 37(5): 524-532.
33 Nuebling T, Schumacher CE, Hofmann M, et al. The immune checkpoint modulator OX40 and its ligand OX40L in NK-cell immunosurveillance and acute myeloid leukemia[J]. Cancer Immunol Res, 2018, 6(2): 209-221.
34 Shibahara I, Saito R, Zhang R, et al. OX40 ligand expressed in glioblastoma modulates adaptive immunity depending on the microenvironment: A clue for successful immunotherapy[J]. Mol Cancer, 2015, 14: 41.
35 Weinberg AD, Morris NP, Kovacsovics-Bankowski M, et al. Science gone translational: the OX40 agonist story[J]. Immunol Rev, 2011, 244(1): 218-231.