|本期目录/Table of Contents|

[1]陈 兰,沈 艳,金 柯,等.肺结核强化期治疗血液学特征的临床意义[J].中华肺部疾病杂志,2024,(06):913-919.[doi:10.3877/cma.j.issn.1674-6902.2024.06.011
]

 Chen Lan,Shen Yan,Jin Ke,et al.Clinical significance of hematological features after intensive treatment of pulmonary tuberculosis[J].,2024,(06):913-919.[doi:10.3877/cma.j.issn.1674-6902.2024.06.011
]
点击复制

肺结核强化期治疗血液学特征的临床意义(PDF)

《中华肺部疾病杂志》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年06期
页码:
913-919
栏目:
论著
出版日期:
2024-12-25

文章信息/Info

Title:
Clinical significance of hematological features after intensive treatment of pulmonary tuberculosis
作者:
陈 兰沈 艳金 柯史 萍邓露茜石丽萍
210000 南京,南京医科大学第一附属医院(江苏省人民医院)感染病科ICU
Author(s):
Chen Lan Shen Yan Jin Ke Shi Ping Deng Luqian Shi Liping.
Department of Infectious Diseases ICU, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Provincial People's Hospital, Nanjing 210000, China
关键词:
肺结核 强化期 血液学参数 痰转阴
Keywords:
Pulmonary tuberculosis Strengthening period Hematological parameters Sputum negative conversion
分类号:
R562
DOI:
10.3877/cma.j.issn.1674-6902.2024.06.011
摘要:
目的 分析肺结核(pulmonary tuberculosis, PTB)强化期治疗后血液学特征的意义。方法 选择2020年5月至2022年6月我院收治的162例新诊断PTB患者为对象。经2个月强化期治疗后痰涂片镜检和痰培养转阴112例为对照组,未转阴50例为观察组。检测24种血液学参数。采用血液学参数联合模型预测。结果 观察组治疗后中性粒细胞计数(neutrophil, NEU)4.92(3.73,6.57)×109/L、单核细胞计数(monocyte, MONO)0.50(0.32,0.72)×109/L、单核细胞与淋巴细胞比值(MLR)0.23(0.16,0.34)、血小板与淋巴细胞比值(PLR)142.10(82.60,184.00)、中性粒细胞与淋巴细胞比值(NLR)2.29(1.57,3.05)、系统免疫炎症指数(systemic immunoinflammatory index, SII)568.60(361.90,1 018.60)、血小板计数(platelet count, PLT)296.00(201.00,390.00)×109/L、血小板压积(plateletcrit, PCT)0.15(0.13,0.19)mg/L、红细胞沉降率(erythrocyte sedimentation rate, ESR)45.00(25.00,85.00)mm/1 h、C反应蛋白(C-reactive protein, CRP)9.30(9.10,11.30)mg/L高于对照组 6.02(4.76,7.52)×109/L、 0.89(0.47,1.08)×109/L、 0.43(0.25,0.59)、 155.50(102.60,193.90)、 2.88(2.23,4.17)、 735.40(575.20,1 110.50)、 259.00(225.00,280.00)×109/L、 0.18(0.14,0.25)mg/L、 75.00(56.00,95.00)mm/1 h、 9.70(9.10,11.60)mg/L,观察组红细胞压积(hematocrit, HCT)42.30(39.10,45.90)%低于对照组 38.20(35.20,40.40)%(P<0.05)。治疗后对照组白细胞计数(white blood cell count, WBC)、NEU、MONO、MLR、NLR、PLR、SII、PLT、MPV、PCT、ESR、CRP降低,红细胞计数(red blood cell count, RBC)、血红蛋白(hemoglobin, Hb)、HCT升高(P<0.05); 观察组治疗后NEU、NLR、MPV、ESR、CRP降低,RBC、HCT、RDW-SD升高(P<0.05)。ROC曲线分析显示,治疗后单独血液学参数指标预测痰未转阴曲线下面积(area under the curve, AUC)<0.75。Logistic回归联合模型AUC高于单个血液学参数(P<0.05)。模型6(NEU、MLR、NLR、PLR、SII、HCT、PCT、ESR、CRP)的准确性,预测AUC为0.852(95%CI:0.787~0.917)。结论 血液学参数联合模型预测PTB强化期治疗,具有临床意义。
Abstract:
Objective To analyze value of hematological features after intensive treatment of pulmonary tuberculosis(PTB). Methods All of 162 newly diagnosed PTB patients admitted to our hospital from May 2020 to June 2022 were selected as subjects. After 2 months of intensive treatment, 112 patients with negative sputum were included in the control group by smear microscopy and sputum culture, and 50 cases without negative sputum were included in the observation group. Peripheral venous blood was collected before and after anti-tuberculosis treatment, and 24 kinds of hematological parameters were detected. Results After treatment, neutrophils count [NEU, 4.92(3.73, 6.57)×109/L vs. 6.02(4.76, 7.52)×109/L] and monocytes count[MONO, 0.50(0.32, 0.72)×109/L vs. 0.89(0.47, 1.08)×109/L], monocyte to lymphocyte ratio [MLR, 0.23(0.16, 0.34)vs. 0.43(0.25, 0.59)], platelet to lymphocyte ratio [PLR, 142.10(82.60, 184.00)vs. 155.50(102.60, 193.90)], neutrophil to lymphocyte ratio [NLR, 2.29(1.57, 3.05)vs. 2.88(2.23, 4.17)], systemic immunoinflammatory index [SII, 568.60(361.90, 1 018.60)vs. 735.40(575.20, 1 110.50)], platelet count [PLT, 296.00(201.00, 390.00)×109/L vs. 259.00(225.00, 280.00)×109/L], platelet [PCT, 0.15(0.13, 0.19)vs. 0.18(0.14, 0.25)], erythrocyte sedimentation rate [ESR, 45.00(25.00, 85.00)mm/1 h vs. 75.00(56.00, 95.00)mm/1 h] and C-reactive protein [CRP, 9.30(9.10, 11.30)mg/L vs. 9.70(9.10, 11.60)mg/L] were significantly higher than those in group. Hematocrit [HCT, 42.30(39.10, 45.90)% vs. 38.20(35.20, 40.40)%] was significantly lower than that in sputum conversion to Yin group(P<0.05). Compared with before treatment, white blood cell count(WBC), NEU, MONO, MLR, NLR, PLR, SII, PLT, MPV, PCT, ESR and CRP were significantly decreased, while red blood cell count(RBC), hemoglobin(Hb)and HCT were significantly increased in the control group after treatment(P<0.05). In the observation group, NEU, NLR, MPV, ESR and CRP were significantly decreased after treatment, while RBC, HCT and RDW-SD were significantly increased(P<0.05). ROC curve was used to evaluate the predictive value of a single indicator for sputum not turning negative after treatment, and the results showed that the area under the prediction curve(AUC)of a single hematology parameter was<0.75. Logistic regression was used to construct the combined model, and the AUC of each model was significantly higher than that of a single hematology parameter(P<0.05). Model 6(NEU, MLR, NLR, PLR, SII, HCT, PCT, ESR, CRP)had good accuracy and predicted an AUC of 0.852(95%CI: 0.787~0.917). Conclusion The combined model of hematology parameters can be used as a noninvasive prognostic tool for the outcome of PTB intensive treatment.

参考文献/References:

1 吕恒梁, 张 馨, 张文义, 等. 肺结核流行病学特征及影响因素研究进展[J]. 疾病监测, 2024, 39(2): 207-214.
2 任成山, 林 辉, 杨仕明. 结核病的流行特征与耐多药的窘迫及其策略[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(3): 269-274.
3 蔡小芳, 高 慧, 葛 军, 等. 多重耐药性肺结核治疗依从性预测分析[J/CD]. 中华肺部疾病杂志(电子版), 2024, 17(1): 51-56.
4 Günther G, Heyckendorf J, Zellweger JP, et al. Defining outcomes of tuberculosis(treatment): from the past to the future[J]. Respiration, 2021, 100(9): 843-852.
5 Heyckendorf J, Georghiou SB, Frahm N, et al. Tuberculosis treatment monitoring and outcome measures: new interest and new strategies[J]. Clin Microbiol Rev, 2022, 35(3): e0022721.
6 Zhang F, Zhang F, Dong Y, et al. New Insights into Biomarkers for Evaluating Therapy Efficacy in Pulmonary Tuberculosis: A Narrative Review[J]. Infect Dis Therapy, 2023, 12(12): 2665-2689.
7 Zimmer AJ, Lainati F, Aguilera Vasquez N, et al. Biomarkers that correlate with active pulmonary tuberculosis treatment response: a systematic review and meta-analysis[J]. J Clin Microbiol, 2022, 60(2): e0185921.
8 Shah AR, Desai KN, Maru AM. Evaluation of hematological parameters in pulmonary tuberculosis patients[J]. J Family Med Prim Care, 2022, 11(8): 4424-4428.
9 Kumar A, Gurram L, Naga Ch P, et al. Correlation of hematological parameters with clinical outcomes in cervical cancer patients treated with radical radio(chemo)therapy: a retrospective study[J]. Int J Radiat Oncol Biol Phys, 2024, 118(1): 182-191.
10 Tu HZ, Lai TJ, Chen YS, et al. Hematological parameters as potential markers for distinguishing pulmonary tuberculosis from genitourinary tuberculosis[J]. Pathogens, 2023, 12(1): 84-93.
11 Batool Y, Pervaiz G, Arooj A, et al. Hematological manifestations in patients newly diagnosed with pulmonary tuberculosis[J]. Pak J Med Sci, 2022, 38(7): 1968-1972.
12 Kerget B, Afin DE, Aksakal A. The role of systemic immune-inflammation index(SII)in the differential diagnosis of granulomatous and reactive LAP diagnosed by endobronchial ultrasonography[J]. Sarcoidosis Vasc Diffuse Lung Dis, 2023, 40(3): e2023038.
13 刘小利, 刘 涛. 新版《肺结核诊断标准》解读[J]. 中华灾害救援医学, 2018, 6(4): 181-183.
14 Asemahagn MA. Sputum smear conversion and associated factors among smear-positive pulmonary tuberculosis patients in East Gojjam Zone, Northwest Ethiopia: a longitudinal study[J]. BMC Pulm Med, 2021, 21(1): 118-127.
15 Nguyen MVH, Levy NS, Ahuja SD, et al. Factors associated with sputum culture-negative vs culture-positive diagnosis of pulmonary tuberculosis[J]. JAMA Netw Open, 2019, 2(2): e187617-e187617.
16 Schumacher SG, Wells WA, Nicol MP, et al. Guidance for studies evaluating the accuracy of sputum-based tests to diagnose tuberculosis[J]. J Infect Dis, 2019, 220(Supplement_3): S99-S107.
17 Heyckendorf J, Georghiou SB, Frahm N, et al. Tuberculosis treatment monitoring and outcome measures: new interest and new strategies[J]. Clin Microbiol Rev, 2022, 35(3): e00227-21.
18 Miyahara R, Piyaworawong S, Naranbhai V, et al. Predicting the risk of pulmonary tuberculosis based on the neutrophil-to-lymphocyte ratio at TB screening in HIV-infected individuals[J]. BMC Infect Dis, 2019, 19(1): 667-675.
19 Li K, Liu SX, Yang CY, et al. A routine blood test-associated predictive model and application for tuberculosis diagnosis: a retrospective cohort study from northwest China[J]. J Int Med Res, 2019, 47(7): 2993-3007.
20 Jeon YL, Lee WI, Kang SY, et al. Neutrophil-to-monocyte-plus-lymphocyte ratio as a potential marker for discriminating pulmonary tuberculosis from nontuberculosis infectious lung diseases[J]. Lab Med, 2019, 50(3): 286-291.
21 Javed I, Javed MT, Mahmood Z, et al. Hematological profiling of tuberculosis-infected and co-morbid patients: a study carried out in central Punjab, Pakistan[J]. Eur J Inflamm, 2018, 16: 2058739218818684.
22 Stefanescu S, Coco Ş R, Turcu-Stiolica A, et al. Prediction of treatment outcome with inflammatory biomarkers after 2 months of therapy in pulmonary tuberculosis patients: preliminary results[J]. Pathogens, 2021, 10(7): 789-805.
23 Cercamondi CI, Stoffel NU, Moretti D, et al. Iron homeostasis during anemia of inflammation: a prospective study of patients with tuberculosis[J]. Blood, 2021, 138(15): 1293-1303.
24 Come YFR, Buntoro IF, Setiono KW, et al. The effect of intensive phase of anti tuberculosis drugs with hemoglobin levels in tuberculosis patients in kupang city[J]. CMJ, 2023, 11(1): 24-32.
25 Portier I, Campbell RA. Role of platelets in detection and regulation of infection[J]. Arteriosclerosis, thrombosis, and vascular biology, 2021, 41(1): 70-78.
26 Tozkoparan E, DenizO, Ucar E, et al. Changes in platelet count andindices in pulmonary tuberculosis[J]. Clin Chem Lab Med, 2007, 45(8): 1009-1013.
27 Bozdemir Ş E, Aslaner H. Can neutrophil to lymphocyte ratio and monocyte to lymphocyte ratio be used in the diagnosis of childhood tuberculosis?[J]. Online Türk Salk Bilimleri Dergisi, 2021, 6(4): 521-527.
28 Biyik M, Biyik Z, Asil M, et al. Systemic inflammation response index and systemic immune inflammation index are associated with clinical outcomes in patients with acute pancreatitis?[J]. J Investigat Surg, 2022, 35(8): 1613-1620.
29 李艳芳, 陈 骥, 范 凌. 肺结核患者治疗前后血清甘露糖结合凝集素、巨噬细胞炎症蛋白-1α及C反应蛋白水平变化及其临床意义[J]. 标记免疫分析与临床, 2020, 27(1): 105-109.

备注/Memo

备注/Memo:
基金项目: 江苏省自然科学基金青年项目(SBK2020040678)
通信作者: 沈 艳, Email: shengyan198903@163.com
更新日期/Last Update: 2024-12-25