1 中华医学会呼吸病学分会肺栓塞与肺血管病学组, 中国医师协会呼吸医师分会肺栓塞与肺血管病工作委员会, 全国肺栓塞与肺血管病防治协作组, 等. 中国肺动脉高压诊断与治疗指南(2021版)[J]. 中华医学杂志, 2021, 101(1): 11-51.
2 Galiè N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the european society of cardiology(ESC)and the european respiratory society(ERS): endorsed by: association for european paediatric and congenital cardiology(AEPC), international society for heart and lung transplantation(ISHLT)[J]. Eur Heart J, 2016, 37(1): 67119.
3 Kovacs G, Berghold A, Scheidl S, et al. Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review[J]. Eur Respir J, 2009, 34(4): 888894.
4 Simonneau G, Montani D, Celermajer DS, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension[J]. Eur Respir J, 2019, 53(1): 1801913.
5 Marc H, Gabor K, Marius MHr, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension[J]. Eur Heart J, 2022, 43(38): 3618-3731.
6 Angela B, Ayako M, Jason XJY. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: Role of membrane receptors, ion channels and Ca2+ signaling[J]. Physiol Reviews, 2022, 103(3): 1827-1897.
7 Hoeper MM, McLaughlin VV, Barberá AJ, et al. Initial combination therapy with ambrisentan and tadalafil and mortality in patients with pulmonary arterial hypertension: a secondary analysis of the results from the randomised, controlled AMBITION study[J]. Lancet Respir Med, 2016, 4(11): 894-901.
8 陈秋宏, 杨 红, 郑 琴, 等. 迷迭香酸对野百合碱诱导肺动脉高压大鼠的作用及机制[J]. 西南医科大学学报, 2024, 47(4): 311-315.
9 Rabinovitch M, Guignabert C, Humbert M, et al. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension[J]. Circ Res, 2014, 115(1): 165-175.
10 Savai R, Pullamsetti SS, Kolbe J, et al. Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2012, 186(9): 897-908.
11 Funk-Hilsdorf TC, Behrens F, Grune J, et al. Dysregulated immunity in pulmonary hypertension: From companion to composer[J].Front Physiol, 2022, 13: 819145.
12 Pugliese SC, Kumar S, Janssen WJ, et al. A time-and compartment-specific activation of lung macrophages in hypoxic pulmonary hypertension[J]. J Immunol, 2017, 198(12): 4802-4812.
13 Florentin J, Coppin E, Vasamsetti SB, et al. Inflammatory macrophage expansion in pulmonary hypertension depends upon mobilization of blood-borne monocytes[J]. J Immunol, 2018, 200(10): 3612-3625.
14 Park B, Suh M, Park JY, et al. Assessment of inflammation in pulmo-68 Ga-mannosylated human serum albuminnary artery hypertension by 68 Ga-mannosylated human serum albumin[J]. Am J Respir Crit Care Med, 2020, 201(1): 95-106.
15 Vergadi E, Chang MS, Lee C, et al. Early macrophage recruitment and alternative activation are critical for the development of hypoxia-induced pulmonary later hypertension[J]. Circulation, 2011, 123(18): 1986-1995.
16 Yunna C, Mengru H, Lei W, et al. Macrophage M1/M2 polarization[J]. Eur J Pharmacol, 2020, 877: 173090.
17 Fan Y, Hao Y, Gao D, et al. Phenotype and function of maero-phage polarization in monocrotaline-induced pulmonary arteriahypertension rat model [J]. Physiol Res, 2021, 70(2): 213-226.
18 Tang C, Luo YM, Li S, et al. Characteristics of inflammationprocess in monocrotaline-induced pulmonary arterial hypertensionin rats [J]. Biomed Pharmacother, 2021, 133: 111081.
19 Michal T, Paulina M, Martyna J, et al. In the search for biomarkers of pulmonary arterial hypertension, are cytokines IL-2, IL-4, IL-6, IL-10, and IFN-Gamma the right indicators to use?[J]. Int J Mol Sci, 2023, 24(18): 13694.
20 Golembeski SM,West J, Tada Y, et al. Interleukin-6 causes mild pulmonary hypertension and augments hypoxia-induced pulmonary hypertension in mice[J]. Chest, 2005, 128(6 Suppl): 572S-573S.
21 Simpson CE, Chen JY, Damico RL, et al. Cellular sources ofinterleukin-6 and associations with clinical phenotypes and out-comes in pulmonary arterial hypertension[ J]. Eur Respir J, 2020, 55(4): 1901761.
22 Ranchoux B, Antigny F, Rucker-Martin C. Endothelial-to-mesenchymal transition in pulmonary hypertension[J]. Circulation, 2015, 131(11): 1006-1018.
23 Florentin J, Coppin E, Vasamsetti SB, et al. Inflammatory macrophage expansion in pulmonary hypertension depends upon mobilization of blood-borne monocytes[J]. J Immunol, 2018, 200(10): 3612-3625.
24 Bid S, Marcos E, Parpaleix A, et al. CCR2/CCR5-mediated macrophage-smooth muscle celcrosstalk inpulmonary hypertension[J]. Eur Respir J, 2019, 54(4): 1802308.
25 Amsellem V, lipskaia L, Abid S, et al. CCR5 as a treatmenttarget in pulmonary arterial hypertension[J]. Circulation, 2014, 130(11): 880-891.
26 Itoh T, Nagaya N, Ishibashiueda H, et al. Increasedplasma monocyte chemoattractant protein-l level in idiopathic pulmonary arterial hypertension[J]. Respir, 2010, 11(2): 158-163.
27 Eleni V, Chang MS, Lee CJ, et al. Early macrophage recruitment and alternative activation are critical for the later development of hypoxia-induced pulmonary hypertension[J]. Circulation, 2011, 123(18): 1986-1995.
28 任成山, 卞士柱, 胡明冬. 肺动脉高压的成因及治疗新理念[J/CD]. 中华肺部疾病杂志(电子版), 2023, 16(1): 1-5.
29 Dilliard SA, Siegwart DJ. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs[J]. Nat Rev Mater, 2023, 8(4): 282-300.
30 Wu Y, Wan S, Yang S, et al. Macrophage cell membrane-based nanoparticles: a new promising biomimetic platform for targeted delivery and treatment[J]. J Nanobiotechnology, 2022, 20(1): 542.
31 Xu X, Kwong CHK, Lee JY, et al.“Zombie” macrophages for targeted drug delivery to treat acute pneumonia[J]. ACS Applied Mater Interfaces, 2023, 15(24): 29012-29022.
32 李 尚, 吕婷婷, 张子睿, 等. 基因治疗在肺动脉高压中的研究进展[J]. 江苏大学学报(医学版), 2022, 32(3): 200-206.
33 Wang S, Chen Q, Zhao T, et al. Nanomedicine-based treatment: An emerging therapeutical strategy for pulmonary hypertension[N]. Nano Research, 2023, https://doi.org/10.1007/s12274-022-5310-6.
34 Liu X, Wang G, You Z, et al. Inhibition of hypoxia-induced proliferation of pulmonary arterial smooth muscle cells by a mTOR siRNA-loaded cyclodextrin nanovector[J]. Biomaterials, 2014, 35(14): 4401-4416.
35 Corsi F, Carotenuto F, Dinardo P, et al. Harnessing inorganic nanoparticles to direct macrophage polarization for skeletal muscle regeneration[J]. Nanomaterials(Basel), 2020, 10(10): 1963.
36 鲍佳明, 赵晨旭, 孙凌云, 等. 基因工程改造巨噬细胞及其应用[J]. 中国免疫学杂志, 2023, 39(10): 2062-2070.
37 李佳蕾, 徐 昉, 廖晓辉. 抗氧化纳米材料在急性肾损伤治疗中的应用进展[J]. 中国急救医学, 2022, 42(1): 72-75.
38 Yu M, Wu XC, Peng LY, et al. Inhibition of Bruton's tyrosine kinase alleviates monocrotaline-induced pulmonary arterial hypertension by modulating macrophage polarization [J]. Oxid Med Cell Longev, 2022, 2022: 6526036.
39 Takahiro HK, Naoki H, Takashi S. Interleukin-6/interleukin-21 signaling axis is critical in the pathogenesis of pulmonary arterial hypertension[J]. Proc Natl Acad Sci U S A, 2015, 112(20): E2677-2686.
40 Jia DL, Bai PY, Wan NF, et al. Niacin attenuates pulmonary hypertension through H-PGDS in macrophages[J]. Circ Res, 2020, 127(10): 1323-1336.