1 Global cancer burden growing, amidst mounting need for services[J]. Saudi Med J, 2024, 45(3): 326-327.
2 魏晓辉, 苏智祥, 陈文娟, 等. PD-1单抗治疗晚期非小细胞肺癌血清IL-27与预后相关性[J/CD]. 中华肺部疾病杂志(电子版), 2023, 16(5): 650-653.
3 Vokes EE, Ready N, Felip E, et al. Nivolumab versus docetaxel in previously treated advanced non-small-cell lung cancer(CheckMate 017 and CheckMate 057): 3-year update and outcomes in patients with liver metastases[J]. Ann Oncol, 2018, 29(4): 959-965.
4 Liang H, Liu Z, Cai X, et al. PD-(L)1 inhibitors vs. chemotherapy vs. their combination in front-line treatment for NSCLC: An indirect comparison[J]. Int J Cancer, 2019, 145(11): 3011-3021.
5 Gandhi L, Rodríguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer[J]. N Engl J Med, 2018, 378(22): 2078-2092.
6 Ren S, Chen J, Xu X, et al. Camrelizumab plus carboplatin and paclitaxel as first-line treatment for advanced squamous NSCLC(CameL-Sq): A phase 3 trial[J]. J Thorac Oncol, 2022, 17(4): 544-557.
7 Zhou C, Wu L, Fan Y, et al. Sintilimab plus platinum and gemcitabine as first-line treatment for advanced or metastatic squamous NSCLC: Results from a randomized, double-blind, phase 3 trial(ORIENT-12)[J]. J Thorac Oncol, 2021, 16(9): 1501-1511.
8 Wang Z, Li X, Chen J, et al. The significance of inflammatory markers in prognosticating the effectiveness and safety of immunotherapy in conjunction with chemotherapy during the primary intervention of advanced non-small cell lung carcinoma[J]. Lung Cancer, 2024, 192: 107817.
9 Wang M, Liang H, Wang W, et al. Immune-related adverse events of a PD-L1 inhibitor plus chemotherapy versus a PD-L1 inhibitor alone in first-line treatment for advanced non-small cell lung cancer: A meta-analysis of randomized control trials[J]. Cancer, 2021, 127(5): 777-786.
10 Fournel L, Wu Z, Stadler N, et al. Cisplatin increases PD-L1 expression and optimizes immune check-point blockade in non-small cell lung cancer[J]. Cancer Lett, 2019, 464: 5-14.
11 Zhou L, Xu Q, Huang L, et al. Low-dose carboplatin reprograms tumor immune microenvironment through STING signaling pathway and synergizes with PD-1 inhibitors in lung cancer[J]. Cancer Lett, 2021, 500: 163-171.
12 Wang H, Huang M, Zhu M, et al. Paclitaxel combined with compound K inducing pyroptosis of non-small cell lung cancer cells by regulating Treg/Th17 balance[J]. Chin Med, 2024, 19(1): 26.
13 Yang LJ, Han T, Liu RN, et al. Plant-derived natural compounds: A new frontier in inducing immunogenic cell death for cancer treatment[J]. Biomed Pharmacother, 2024, 177: 117099.
14 Cavazzoni A, Digiacomo G, Alfieri R, et al. Pemetrexed enhances membrane PD-L1 expression and potentiates T cell-mediated cytotoxicity by anti-PD-L1 antibody therapy in non-small-cell lung cancer[J]. Cancers(Basel), 2020, 12(3): 666.
15 Iyengar P, Zhang-Velten E, Court L, et al. Accelerated hypofractionated image-guided vs conventional radiotherapy for patients with stage Ⅱ/Ⅲ non-small cell lung cancer and poor performance status: A randomized clinical trial[J]. JAMA Oncol, 2021, 7(10): 1497-1505.
16 Herbst RS, Baas P, Perez-Gracia JL, et al. Use of archival versus newly collected tumor samples for assessing PD-L1 expression and overall survival: an updated analysis of KEYNOTE-010 trial[J]. Ann Oncol, 2019, 30(2): 281-289.
17 Wang Y, Liu ZG, Yuan H, et al. The reciprocity between radiotherapy and cancer immunotherapy[J]. Clin Cancer Res, 2019, 25(6): 1709-1717.
18 Wang D, Zhang X, Gao Y, et al. Research progress and existing problems for abscopal effect[J]. Cancer Manag Res, 2020, 12: 6695-6706.
19 Geng Y, Zhang Q, Feng S, et al. Safety and efficacy of PD-1/PD-L1 inhibitors combined with radiotherapy in patients with non-small-cell lung cancer: a systematic review and meta-analysis[J]. Cancer Med, 2021, 10(4): 1222-1239.
20 邵永康, 李 莉, 袁双虎. 局部晚期非小细胞肺癌PD-1/PD-L1抑制剂联合放疗研究进展[J]. 中华肿瘤防治杂志, 2022, 29(10): 776-780.
21 Lamplugh Z, Fan Y. Vascular microenvironment, tumor immunity and immunotherapy[J]. Front Immunol, 2021, 12: 811485.
22 Fukumura D, Kloepper J, Amoozgar Z, et al. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges[J]. Nat Rev Clin Oncol, 2018, 15(5): 325-340.
23 Mpekris F, Panagi M, Charalambous A, et al. Modulating cancer mechanopathology to restore vascular function and enhance immunotherapy[J]. Cell Rep Med, 2024, 5(7): 101626.
24 Socinski MA, Jotte RM, Cappuzzo F, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC[J]. N Engl J Med, 2018, 378(24): 2288-2301.
25 Awad MM, Gadgeel SM, Borghaei H, et al. Long-term overall survival from KEYNOTE-021 cohort G: Pemetrexed and carboplatin with or without pembrolizumab as first-line therapy for advanced nonsquamous NSCLC[J]. J Thorac Oncol, 2021, 16(1): 162-168.
26 Qiao N, Insinga R, de Lima Lopes Junior G, et al. A review of cost-effectiveness studies of pembrolizumab regimens for the treatment of advanced non-small cell lung cancer[J]. Pharmacoecon Open, 2021, 5(3): 365-383.
27 Novello S, Kowalski DM, Luft A, et al. Pembrolizumab plus chemotherapy in squamous non-small-cell lung cancer: 5-year update of the phase Ⅲ KEYNOTE-407 study[J]. J Clin Oncol, 2023, 41(11): 1999-2006.
28 Singh N, Baby D, Rajguru JP, et al. Inflammation and cancer[J]. Ann Afr Med, 2019, 18(3): 121-126.
29 Chen Y, Wang W, Zhang X, et al. Prognostic significance of combined preoperative platelet-to-lymphocyte ratio and lymphocyte-to-monocyte ratio in patients undergoing surgery with stage IB non-small-cell lung cancer[J]. Cancer Manag Res, 2018, 10: 5411-5422.
30 Jiang T, Bai Y, Zhou F, et al. Clinical value of neutrophil-to-lymphocyte ratio in patients with non-small-cell lung cancer treated with PD-1/PD-L1 inhibitors[J]. Lung Cancer, 2019, 130: 76-83.
31 代 佳, 李 林, 贺 林, 等. 中性粒细胞/淋巴细胞比值、血小板/淋巴细胞比值与肺癌早期诊断以及临床病理特征相关性分析[J]. 陕西医学杂志, 2023, 52(4): 468-471.
32 Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance[J]. Annu Rev Pathol, 2021, 16: 223-249.
33 田 甜, 唐苏丹. 血小板/淋巴细胞比值与PD-1/PD-L1抑制剂治疗非小细胞肺癌患者预后关系的Meta分析[J]. 肿瘤防治研究, 2021, 48(6): 611-616.
34 Shoji F, Kozuma Y, Toyokawa G, et al. Complete blood cell count-derived inflammatory biomarkers in early-stage non-small-cell lung cancer[J]. Ann Thorac Cardiovasc Surg, 2020, 26(5): 248-255.
35 Keegan A, Ricciuti B, Garden P, et al. Plasma IL-6 changes correlate to PD-1 inhibitor responses in NSCLC[J]. J Immunother Cancer, 2020, 8(2): e000678.
36 Onodera R, Chiba S, Nihei S, et al. High level of C-reactive protein as a predictive factor for immune-related adverse events of immune checkpoint inhibitors in non-small cell lung cancer: a retrospective study[J]. J Thorac Dis, 2023, 15(8): 4237-4247.
37 Nakayama T, Saito K, Kumagai J, et al. Higher serum c-reactive protein level represents the immunosuppressive tumor microenvironment in patients with clear cell renal cell carcinoma[J]. Clin Genitourin Cancer, 2018, 16(6): e1151-e1158.
38 de Castro G Jr, Kudaba I, Wu YL, et al. Five-year outcomes with pembrolizumab versus chemotherapy as first-line therapy in patients with non-small-cell lung cancer and programmed death ligand-1 tumor proportion score ≥1% in the KEYNOTE-042 study[J]. J Clin Oncol, 2023, 41(11): 1986-1991.
39 Paz-Ares L, Vicente D, Tafreshi A, et al. A randomized, placebo-controlled trial of pembrolizumab plus chemotherapy in patients with metastatic squamous NSCLC: Protocol-specified final analysis of KEYNOTE-407[J]. J Thorac Oncol, 2020, 15(10): 1657-1669.
40 Zhou C, Chen G, Huang Y, et al. Camrelizumab plus carboplatin and pemetrexed versus chemotherapy alone in chemotherapy-naive patients with advanced non-squamous non-small-cell lung cancer(CameL): a randomised, open-label, multicentre, phase 3 trial[J]. Lancet Respir Med, 2021, 9(3): 305-314.
41 江 婷, 罗伊扬, 叶子翔, 等. PD-1/PD-L1抑制剂联合化疗对比化疗一线治疗晚期非小细胞肺癌疗效及安全性的Meta分析[J]. 浙江中西医结合杂志, 2023, 33(5): 471-479.
42 Ma J, Chi D, Wang Y, et al. Prognostic value of PD-L1 expression in resected lung adenocarcinoma and potential molecular mechanisms[J]. J Cancer, 2018, 9(19): 3489-3499.
43 Marcus L, Lemery SJ, Keegan P, et al. FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors[J]. Clin Cancer Res, 2019, 25(13): 3753-3758.
44 Zhao P, Li L, Jiang X, et al. Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy[J]. J Hematol Oncol, 2019, 12(1): 54.
45 Olivares-Hernández A, Del Barco Morillo E, Parra Pérez C, et al. Influence of DNA mismatch repair(MMR)system in survival and response to immune checkpoint inhibitors(ICIs)in non-small cell lung cancer(NSCLC): retrospective analysis[J]. Biomedicines, 2022, 10(2): 360.
46 Zang YS, Dai C, Xu X, et al. Comprehensive analysis of potential immunotherapy genomic biomarkers in 1000 Chinese patients with cancer[J]. Cancer Med, 2019, 8(10): 4699-4708.
47 Luchini C, Bibeau F, Ligtenberg MJL, et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach[J]. Ann Oncol, 2019, 30(8): 1232-1243.
48 Anagnostou V, Bardelli A, Chan TA, et al. The status of tumor mutational burden and immunotherapy[J]. Nat Cancer, 2022, 3(6): 652-656.
49 Aggarwal C, Thompson JC, Chien AL, et al. Baseline plasma tumor mutation burden predicts response to pembrolizumab-based therapy in patients with metastatic non-small cell lung cancer[J]. Clin Cancer Res, 2020, 26(10): 2354-2361.
50 Cristescu R, Mogg R, Ayers M, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy[J]. Science, 2018, 362(6411): eaar3593.
51 Hodi FS, Wolchok JD, Schadendorf D, et al. TMB and inflammatory gene expression associated with clinical outcomes following immunotherapy in advanced melanoma[J]. Cancer Immunol Res, 2021, 9(10): 1202-1213.
52 Vlachostergios PJ, Karathanasis A, Tzortzis V. Expression of fibroblast activation protein is enriched in neuroendocrine prostate cancer and predicts worse survival[J]. Genes(Basel), 2022, 13(1): 135.
53 Lin Y, Li B, Yang X, et al. Fibroblastic FAP promotes intrahepatic cholangiocarcinoma growth via MDSCs recruitment[J]. Neoplasia, 2019, 21(12): 1133-1142.
54 Moreno-Ruiz P, Corvigno S, Te Grootenhuis NC, et al. Stromal FAP is an independent poor prognosis marker in non-small cell lung adenocarcinoma and associated with p53 mutation[J]. Lung Cancer, 2021, 155: 10-19.
55 Zhao Y, Liu Y, Jia Y. Fibroblast activation protein in the tumor microenvironment predicts outcomes of PD-1 blockade therapy in advanced non-small cell lung cancer[J]. J Cancer Res Clin Oncol, 2023, 149(7): 3469-3483.
56 Tan HX, Xiao ZG, Huang T, et al. CXCR4/TGF-β1 mediated self-differentiation of human mesenchymal stem cells to carcinoma-associated fibroblasts and promoted colorectal carcinoma development[J]. Cancer Biol Ther, 2020, 21(3): 248-257.
57 Zeng Y, Li B, Liang Y, et al. Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment[J]. FASEB J, 2019, 33(5): 6596-6608.
58 Vitiello GA, Miller G. Targeting the interleukin-17 immune axis for cancer immunotherapy[J]. J Exp Med, 2020, 217(1): e20190456.
59 Wu Z, He D, Zhao S, et al. IL-17A/IL-17RA promotes invasion and activates MMP-2 and MMP-9 expression via p38 MAPK signaling pathway in non-small cell lung cancer[J]. Mol Cell Biochem, 2019, 455(1-2): 195-206.
60 Yan J, Allen S, McDonald E, et al. MAIT cells promote tumor initiation, growth, and metastases via tumor MR1[J]. Cancer Discov, 2020, 10(1): 124-141.
61 Schneider BJ, Naidoo J, Santomasso BD, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: ASCO guideline update[J]. J Clin Oncol, 2021, 39(36): 4073-4126.