1 Wu F, Wang L, Zhou C. Lung cancer in China: Current and prospect[J]. Curr Opin Oncol, 2021, 33(1): 40-46.
2 吴国明, 钱桂生. 非小细胞肺癌靶向治疗研究进展及新理念[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(4): 405-408.
3 Schabath MB, Cote ML. Cancer progress and priorities: Lung cancer[J]. Cancer Epidemiol Biomarkers Prev, 2019, 28(10): 1563-1579.
4 农靖颖, 顾艳斐, 张 毅. 晚期非小细胞肺癌免疫治疗预测生物标志物的研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2021, 14(4): 536-538.
5 Wu S, Zhu C, Tang D, et al. The role of ferroptosis in lung cancer[J]. Biomark Res, 2021, 9(1): 82.
6 Yoshida M, Minagawa S, Araya J, et al. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis[J]. Nat Commun, 2019, 10(1): 3145.
7 Robinson MD, Mccarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2010, 26(1): 139-140.
8 Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7): e47.
9 Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis[J]. BMC bioinformatics, 2008, 9(1): 559.
10 Li J, Cao F, Yin H, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2): 88.
11 Badgley MA, Kremer DM, Maurer HC, et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice[J]. Science, 2020, 368(6486): 85-89.
12 Dai E, Han L, Liu J, et al. Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway[J]. Nat Commun, 2020, 11(1): 6339.
13 Becker HM. Carbonic anhydrase IX and acid transport in cancer[J]. Br J Cancer, 2020, 122(2): 157-167.
14 Mcdonald PC, Winum JY, Supuran CT, et al. Recent developments in targeting carbonic anhydrase IX for cancer therapeutics[J]. Oncotarget, 2012, 3(1): 84-97.
15 Li Z, Jiang L, Chew SH, et al. Carbonic anhydrase 9 confers resistance to ferroptosis/apoptosis in malignant mesothelioma under hypoxia[J]. Redox Biol, 2019, 26: 101297.
16 Song X, Zhu S, Xie Y, et al. JTC801 induces pH-dependent death specifically in cancer cells and slows growth of tumors in mice[J]. Gastroenterology, 2018, 154(5): 1480-1493.
17 Wen J, Yang T, Mallouk N, et al. Urinary exosomal CA9 mRNA as a novel liquid biopsy for molecular diagnosis of bladder cancer[J]. Int J Nanomedicine, 2021, 16: 4805-4811.
18 Gu M. CA9 overexpression is an independent favorable prognostic marker in intrahepatic cholangiocarcinoma[J]. Int J Clin Exp Pathol, 2015, 8(1): 862-866.
19 Guan C, Ouyang D, Qiao Y, et al. CA9 transcriptional expression determines prognosis and tumour grade in tongue squamous cell carcinoma patients[J]. J Cell Mol Med, 2020, 24(10): 5832-5841.
20 Wang S, Fu Z, Wang Y, et al. Correlation of carbonic anhydrase 9(CA9)with pathological T-stage and prognosis in patients with oral tongue squamous cell carcinoma[J]. Ann Transl Med, 2020, 8(22): 1521.
21 Sowa T, Menju T, Chen-Yoshikawa TF, et al. Hypoxia-inducible factor 1 promotes chemoresistance of lung cancer by inducing carbonic anhydrase IX expression[J]. Cancer Med, 2017, 6(1): 288-297.
22 Giatromanolaki A, Harris AL, Banham AH, et al. Carbonic anhydrase 9(CA9)expression in non-small-cell lung cancer: correlation with regulatory FOXP3+T-cell tumour stroma infiltration[J]. Br J Cancer, 2020, 122(8): 1205-1210.
23 Zhang C, Lu X, Liu X, et al. Carbonic anhydrase IX controls vulnerability to ferroptosis in gefitinib-resistant lung cancer[J]. Oxid Med Cell Longev, 2023, 2023: 1367938.
24 Stewart DJ, Nunez MI, Behrens C, et al. Membrane carbonic anhydrase IX expression and relapse risk in resected stage Ⅰ-Ⅱ non-small-cell lung cancer[J]. J Thorac Oncol, 2014, 9(5): 675-684.
25 Janmaat ML, Rodriguez JA, Jimeno J, et al. Kahalalide F induces necrosis-like cell death that involves depletion of ErbB3 and inhibition of Akt signaling[J]. Mol Pharmacol, 2005, 68(2): 502-510.
26 Wyer S, Townsend DM, Ye Z, et al. Recent advances and limitations in the application of kahalalides for the control of cancer[J]. Biomed Pharmacother, 2022, 148: 112676.
27 Arkenau H, Plummer R, Molife LR, et al. A phase I dose escalation study of AT9283, a small molecule inhibitor of aurora kinases, in patients with advanced solid malignancies[J]. 2012, 23(5): 1307-1313.
28 Dent SF, Gelmon KA, Chi KN, et al. NCIC CTG IND.181: phase I study of AT9283 given as a weekly 24 hour infusion in advanced malignancies[J]. Invest New Drugs, 2013, 31(6): 1522-1529.
29 Lucas M, Lynley VM, Andrew DJP, et al. A phase I trial of AT9283 (a selective inhibitor of aurora kinases)in children and adolescents with solid tumors: A Cancer Research UK study[J]. Clin Cancer Res, 2015, 21(2): 267-273.
30 Moreno L, Marshall LV, Pearson AD, et al. A phase I and pharmacodynamic study of AT9283, a small-molecule inhibitor of aurora kinases in patients with relapsed/refractory leukemia or myelofibrosis[J]. Clin Cancer Res, 2015, 21(2): 267-273.